skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2135960

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We compute the RO(G)‐graded equivariant algebraic K‐groups of a finite field with an action by its Galois group G. Specifically, we show these K‐groups split as the sum of an explicitly computable term and the well‐studied RO(G)‐graded coefficient groups of the equivariant Eilenberg–MacLane spectrum HZ. Our comparison between the equivariant K‐theory spectrum and HZ further shows they share the same Tate spectra and geometric fixed point spectra. In the case where G has prime order, we provide an explicit presentation of the equivariant K‐groups. 
    more » « less
    Free, publicly-accessible full text available December 31, 2025
  2. We define a monoidal category W and a closely related 2‐category 2Weyl using diagrammatic methods. We show that 2Weyl acts on the category TL of modules over Temperley–Lieb algebras, with its generating 1‐morphisms acting by induction and restriction. The Grothendieck groups of W and a third category we define W^\infty are closely related to the Weyl algebra. We formulate a sense in which K_0(W^\infty) acts asymptotically on K_0(TL). 
    more » « less
  3. We use the degree of the colored Jones knot polynomials to show that the crossing number of a (p,q)‐cable of an adequate knot with crossing number c is larger than q^2 c. As an application, we determine the crossing number of 2‐cables of adequate knots. We also determine the crossing number of the connected sum of any adequate knot with a 2‐cable of an adequate knot. 
    more » « less