Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract With technological advancements in diagnostic imaging, smart sensing, and wearables, a multitude of heterogeneous sources or modalities are available to proactively monitor the health of the elderly. Due to the increasing risks of falls among older adults, an early diagnosis tool is crucial to prevent future falls. However, during the early stage of diagnosis, there is often limited or no labeled data (expert-confirmed diagnostic information) available in the target domain (new cohort) to determine the proper treatment for older adults. Instead, there are multiple related but non-identical domain data with labels from the existing cohort or different institutions. Integrating different data sources with labeled and unlabeled samples to predict a patient's condition poses a significant challenge. Traditional machine learning models assume that data for new patients follow a similar distribution. If the data does not satisfy this assumption, the trained models do not achieve the expected accuracy, leading to potential misdiagnosing risks. To address this issue, we utilize domain adaptation (DA) techniques, which employ labeled data from one or more related source domains. These DA techniques promise to tackle discrepancies in multiple data sources and achieve a robust diagnosis for new patients. In our research, we have developed an unsupervised DA model to align two domains by creating a domain-invariant feature representation. Subsequently, we have built a robust fall-risk prediction model based on these new feature representations. The results from simulation studies and real-world applications demonstrate that our proposed approach outperforms existing models.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract We used smartphone technology to differentiate the gait characteristics of older adults with osteoporosis with falls from those without falls. We assessed gait mannerism and obtained activities of daily living (ADLs) with wearable sensor systems (smartphones and inertial measurement units [IMUs]) to identify fall-risk characteristics. We recruited 49 persons with osteoporosis: 14 who had a fall within a year before recruitment and 35 without falls. IMU sensor signals were sampled at 50 Hz using a customized smartphone app (Lockhart Monitor) attached at the pelvic region. Longitudinal data was collected using MoveMonitor+ (DynaPort) IMU over three consecutive days. Given the close association between serum calcium, albumin, PTH, Vitamin D, and musculoskeletal health, we compared these markers in individuals with history of falls as compared to nonfallers. For the biochemical parameters fall group had significantly lower calcium ( P = 0.01*) and albumin ( P = 0.05*) and higher parathyroid hormone levels ( P = 0.002**) than nonfall group. In addition, persons with falls had higher sway area ( P = 0.031*), lower dynamic stability ( P < 0.001***), gait velocity ( P = 0.012*), and were less able to perform ADLs ( P = 0.002**). Thus, persons with osteoporosis with a history of falls can be differentiated by using dynamic real-time measurements that can be easily captured by a smartphone app, thus avoiding traditional postural sway and gait measures that require individuals to be tested in a laboratory setting.more » « less
-
The aim of this study was to investigate to what extent PD affects the ability to walk, respond to balance perturbations in a single training session, and produce acute short-term effects to improve compensatory reactions and control of unperturbed walking stability. Understanding the mechanism of compensation and neuroplasticity to unexpected step perturbation training during walking and static stance can inform treatment of PD by helping to design effective training regimens that remediate fall risk. Current rehabilitation therapies are inadequate at reducing falls in people with Parkinson’s disease (PD). While pharmacologic and surgical treatments have proved largely ineffective in treating postural instability and gait dysfunction in people with PD, studies have demonstrated that therapy specifically focusing on posture, gait, and balance may significantly improve these factors and reduce falls. The primary goal of this study was to assess the effectiveness of a novel and promising intervention therapy (protective step training – i.e., PST) to improve balance and reduce falls in people with PD. A secondary goal was to understand the effects of PST on proactive and reactive feedback responses during stance and gait tasks. Multiple-baseline, repeated measures analyses were performed on the multitude of proactive and reactive performance measures to assess the effects of PST on gait and postural stability parameters. In general, the results indicate that participants with PD were able to use experiences with perturbation training to integrate and adapt feedforward and feedback behaviors to reduce falls. The ability of the participants with PD to adapt to changes in task demands suggests that individuals with PD could benefit from the protective step training to facilitate balance control during rehabilitation.more » « less
An official website of the United States government
