skip to main content


Search for: All records

Award ID contains: 2137340

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Phytoplankton stoichiometry modulates the interaction between carbon, nitrogen and phosphorus cycles. Environmentally driven variations in phytoplankton C:N:P can alter biogeochemical cycling compared to expectations under fixed ratios. In fact, the assumption of fixed C:N:P has been linked to Earth System Model (ESM) biases and potential misrepresentation of responses to future change. Here we integrate key elements of the Adaptive Trait Optimization Model (ATOM) for phytoplankton stoichiometry with the Carbon, Ocean Biogeochemistry and Lower Trophics (COBALT) ocean biogeochemical model. Within a series of global ocean‐ice‐ecosystem retrospective simulations, ATOM‐COBALT reproduced observations of phytoplankton N:P, and compared to static ratios, exhibited reduced phytoplankton P‐limitation, enhanced N‐fixation, and increased low‐latitude export, improving consistency with observations and highlighting the biogeochemical implications of dynamic N:P. We applied ATOM‐COBALT to explore the impacts of different physiological mechanisms hypothesized to underlie N:P variation, finding that two mechanisms together drove the observed patterns: proportionality of P‐rich ribosomes in phytoplankton cells to growth rates and reductions in P‐storage during scarcity. A third mechanism which linked temperature with phytoplankton biomass allocations to non‐ribosomal proteins, led only to relatively modest impacts because this mechanism decreased the temperature dependence of phytoplankton growth rates, compensating for changes in N:P. We find that there are quantitative response differences that associate distinctive biogeochemical footprints with each mechanism, which are most apparent in highly productive low‐latitude regions. These results suggest that variable phytoplankton N:P makes phytoplankton productivity and export resilient to environmental changes, and support further research on the physiological and environmental drivers of phytoplankton stoichiometry and biogeochemical role.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Abstract

    The elemental ratios of carbon, nitrogen, and phosphorus (C:N:P) within organic matter play a key role in coupling biogeochemical cycles in the global ocean. At the cellular level, these ratios are controlled by physiological responses to the environment. But linking these cellular‐level processes to global biogeochemical cycles remains challenging. We present a novel model framework that combines knowledge of phytoplankton cellular functioning with global scale hydrographic data, to assess the role of variable carbon‐to‐phosphorus ratios (RC:P) on the distribution of export production. We implement a trait‐based mechanistic model of phytoplankton growth into a global biogeochemical inverse model to predict global patterns of phytoplankton physiology and stoichiometry that are consistent with both biological growth mechanisms and hydrographic carbon and nutrient observations. We compare this model to empirical parameterizations relatingRC:Pto temperature or phosphate concentration. We find that the way the model represents variable stoichiometry affects the magnitude and spatial pattern of carbon export, with globally integrated fluxes varying by up to 10% (1.3 Pg C yr−1) across models. Despite these differences, all models exhibit strong consistency with observed dissolved inorganic carbon and phosphate concentrations (R2 > 0.9), underscoring the challenge of selecting the most accurate model structure. We also find that the choice of parameterization impacts the capacity of changingRC:Pto buffer predicted export declines. Our novel framework offers a pathway by which additional biological information might be used to reduce the structural uncertainty in model representations of phytoplankton stoichiometry, potentially improving our capacity to project future changes.

     
    more » « less