skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2137467

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Subglacial calcite precipitation is thought to occur in East Antarctica during periods when warm Southern Ocean waters access the ice sheet margin. Here we present an expanded precipitate archive that includes a continent‐wide compilation of 38 new and previously reported calcite234U‐230Th ages with isotopic compositional data. These data are interpreted to record periods when interior meltwaters are exported to the ice sheet margins as a result of ice acceleration and thinning. An assessment of coincidence between234U‐230Th dates, ranging from 16 to 256 ka, and peaks in Southern Ocean temperature yields a statistically significant correlation. Additional comparison of precipitate dates and climate data finds that calcite formation and ice acceleration cluster within periods of enhanced millennial scale climate variability as well as high global ice volume. This sensitivity to background climate is consistent with the hypothesis that these factors exert some control on ice sheet response to changes in climate. 
    more » « less
  2. Abstract Granitic batholiths of the ∼500 Ma Ross Orogen in Antarctica are voluminous in scale, reflecting prolific magmatism along the active early Paleozoic convergent margin of Gondwana. New age and isotopic analysis of zircons from a large suite of Ross granitoids spanning >2,000 km along the orogen provide a wealth of geochronologic, tracer, and inheritance information, enabling us to investigate the pace of magmatism, along‐strike temporal and geochemical trends, magmatic sources, and tectonic modes of convergence. Because granitoids penetrate the crust of the earlier Neoproterozoic rift margin, they also provide insight into the age and composition of the largely ice‐covered East Antarctic craton. Zircon U‐Pb ages from these and other samples indicate that active Ross magmatism spanned 475–590 Ma, much longer than generally regarded. Most samples have heavy zircon δ18O values between 6.5 and 11.5‰ and initial εHfcompositions between 0 and −15; their isotopic co‐variations are independent of age, as in other contemporary continental arcs, and reflect largely crustal melt sources. Samples near Shackleton Glacier have distinctly more mantle‐like isotope composition (i.e., radiogenic εHfand low δ18O) and separate two regions with distinctive isotopic properties and inheritance patterns—a more juvenile section of Mesoproterozoic crust underlying the southern TAM and an older, more evolved region of Paleoproterozoic and Archean crust in the central TAM. The isotopic discontinuity separating these regions indicates the presence of a cryptic crustal boundary of Grenvillian or younger age within the East Antarctic shield that may be traceable into the western Laurentian part of the Rodinia supercontinent. 
    more » « less
  3. Abstract Ice cores and offshore sedimentary records demonstrate enhanced ice loss along Antarctic coastal margins during millennial-scale warm intervals within the last glacial termination. However, the distal location and short temporal coverage of these records leads to uncertainty in both the spatial footprint of ice loss, and whether millennial-scale ice response occurs outside of glacial terminations. Here we present a >100kyr archive of periodic transitions in subglacial precipitate mineralogy that are synchronous with Late Pleistocene millennial-scale climate cycles. Geochemical and geochronologic data provide evidence for opal formation during cold periods via cryoconcentration of subglacial brine, and calcite formation during warm periods through the addition of subglacial meltwater originating from the ice sheet interior. These freeze-flush cycles represent cyclic changes in subglacial hydrologic-connectivity driven by ice sheet velocity fluctuations. Our findings imply that oscillating Southern Ocean temperatures drive a dynamic response in the Antarctic ice sheet on millennial timescales, regardless of the background climate state. 
    more » « less
  4. Free, publicly-accessible full text available August 1, 2026
  5. The use of stone hammers to produce sharp stone flakes—knapping—is thought to represent a significant stage in hominin technological evolution because it facilitated the exploitation of novel resources, including meat obtained from medium‐to‐large‐sized vertebrates. The invention of knapping may have occurred via an additive (i.e., cumulative) process that combined several innovative stages. Here, we propose that one of these stages was the hominin use of ‘naturaliths,’ which we define as naturally produced sharp stone fragments that could be used as cutting tools. Based on a review of the literature and our own research, we first suggest that the ‘typical’ view, namely that sharp‐edged stones are seldom produced by nonprimate processes, is likely incorrect. Instead, naturaliths can be, and are being, endlessly produced in a wide range of settings and thus may occur on the landscape in far greater numbers than archaeologists currently understand or acknowledge. We then explore the potential role this ‘naturalith prevalence’ may have played in the origin of hominin stone knapping. Our hypothesis suggests that the origin of knapping was not a ‘Eureka!’ moment whereby hominins first made a sharp flake by intention or by accident and then sought something to cut, but instead was an emulative process by hominins aiming to reproduce the sharp tools furnished by mother nature and already in demand. We conclude with a discussion of several corollaries our proposal prompts, and several avenues of future research that can support or question our proposal. 
    more » « less
    Free, publicly-accessible full text available March 15, 2026
  6. Troll, Valentin (Ed.)
    Continental alkaline magmatism produces a wide variety of igneous rock types because of varying degrees of partial melting of heterogenous mantle sources, fractional crystallization, and magma contamination during transit through the continental crust. The Mount Overlord Volcanic Field (MOVF) is a continental alkaline volcanic province in northern Victoria Land, Antarctica. Mount Overlord and the associated vents that make up the volcanic field are some of the least-explored volcanic rocks in the western Ross Sea. The MOVF sits within the Transantarctic Mountains, which form the rift shoulder of the extensive West Antarctic Rift System. The compositions of volcanic rocks in the MOVF range widely from basanite to evolved trachyte and comendite with a suite of intermediate rock types. Here we present 40Ar/39Ar ages, petrography, and whole-rock and mineral geochemistry to establish the temporal and magmatic evolution of the magmatic system. Volcanic activity occurred from 21.2 to 6.9 Ma, making it one of the longest records of volcanism in the western Ross Sea area. Mount Rittmann, an active volcano that is part of the MOVF, is not discussed here but extends the timing of volcanism of the MOVF into the Holocene. At Mount Overlord and surrounding areas, there were eruptions of lava flows, domes, and pyroclastic rocks. Localized deposits of hyaloclastites formed by magma-ice interactions provide an insight into former ice levels. Geochemically the MOVF shows a single magma differentiation trend except for Navigator Nunatak lavas which have a potassic affinity rarely seen in northern Victoria Land. Partial melting of an amphibole-bearing mantle lithology at or near the base of the continental lithospheric mantle (CLM) was the main source of the parental basaltic magmas. Polybaric crystal fractionation of the primary basaltic magmas mainly occurred at lower crustal depths and involved fractionation of clinopyroxene, olivine, kaersutite, feldspars, biotite, Fe–Ti oxides, apatite, and sodalite. Crustal assimilation of c. 10% granite harbor igneous complex granitoids was important in the evolution of intermediate composition magmas. Trachyte, phonolite, and comendite magmas stagnated and evolved at shallow crustal depths (c. <8 km). Over 95% crystal fractionation was required to generate the comendites. Extraction of the comendite melt from a felsic crystal mush was an important process. The potassic Navigator Nunatak magma required partial melting of phlogopite-bearing metasomatized CLM. The metasomes had ‘HIMU-like’ or FOZO isotopic compositions that ultimately originated from recycling of materials in the mantle. The MOVF displays a stronger affinity toward FOZO than other northern Victoria Land basaltic rocks. This suggests that the interaction between parental melt and juvenile CLM was limited, which is similar to volcanic rocks from the oceanic Adare Basin seamounts. Our result emphasizes the critical importance of a thick CLM for the genesis of diverse alkaline magma compositions in a continental rift system. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  7. Abstract. Antarctic meltwater is a significant source of iron that fertilizes present-day Southern Ocean ecosystems and may enhance marine carbon burial on geologic timescales. However, it remains uncertain how this nutrient flux changes through time, particularly in response to climate, due to an absence of geologic records detailing trace metal mobilization beneath ice sheets. In this study, we present a 25 kyr record of aqueous trace metal cycling beneath the East Antarctic Ice Sheet measured in a subglacial chemical precipitate that formed across glacial termination III (TIII). The deposition rate and texture of this sample describe a shift in basal meltwater flow following the termination. Alternating layers of opal and calcite deposited in the 10 kyr prior to TIII record centennial-scale subglacial flushing events, whereas reduced basal flushing resulted in slower deposition of a trace metal-rich (Fe, Mn, Mo, Cu) calcite in the 15 kyr after TIII. This sharp increase in calcite metal concentrations following TIII indicates that diminished subglacial meltwater flow restricted the influx of oxygen from basal ice melt to precipitate-forming waters, causing dissolution of redox-sensitive trace metals from the bedrock substrate. These results are consistent with a possible feedback between orbital climate cycles and Antarctic subglacial iron discharge to the Southern Ocean, whereby heightened basal meltwater flow during terminations supplies oxygen to subglacial waters along the ice sheet periphery, which reduces the solubility of redox sensitive elements. As the climate cools, thinner ice and slower ice flow reduce basal meltwater production rates, limiting oxygen delivery and promoting more efficient mobilization of subglacial trace metals. Using a simple model to calculate the concentration of Fe in Antarctic basal water through time, we show that the rate of Antarctic iron discharge to the Southern Ocean is highly sensitive to this heightened mobility, and may therefore, increase significantly during cold climate periods. 
    more » « less
  8. While thermochronological studies have constrained the landscape evolution of several of the crustal blocks of West and East Antarctica, the tectono-thermal evolution of the Ellsworth Mountains remains relatively poorly constrained. These mountains are among the crustal blocks that comprise West Antarctica and exhibit an exceptionally well-preserved Palaeozoic sedimentary sequence. Despite the seminal contribution of Fitzgerald and Stump (1991), who suggested an Early Cretaceous uplift event for the Ellsworth Mountains, further thermochronological studies are required to improve the current understanding of the landscape evolution of this mountain chain. We present new zircon (U–Th) / He (ZHe) ages, which provide insights into the landscape evolution of the Ellsworth Mountains. The ZHe ages collected from near the base and the top of the sequence suggest that these rocks underwent burial reheating after deposition. A cooling event is recorded during the Jurassic–Early Cretaceous, which we interpret as representing exhumation in response to rock uplift of the Ellsworth Mountains. Moreover, our results show that while ZHe ages at the base of the sequence are fully reset, towards the top ZHe ages are partially reset. Uplift and exhumation of the Ellsworth Mountains during the Jurassic–Early Cretaceous was contemporaneous with the rotation and translation of this crustal block with respect to East Antarctica and possibly the Antarctic Peninsula. Furthermore, this period is characterized by widespread extension associated with the disassembly and breakup of Gondwana, with the Ellsworth Mountains playing a key role in the opening of the far southern Atlantic. Based on these results, we suggest that uplift of the Ellsworth Mountains during the disassembly of Gondwana provides additional evidence for major rearrangement of the crustal blocks between the South American, African, Australian and Antarctic plates. Finally, uplift of the Ellsworth Mountains commenced during the Jurassic, which predates the Early Cretaceous uplift of the Transantarctic Mountains. We suggest that the rift-related exhumation of the Ellsworth Mountains occurred throughout two events: (i) a Jurassic uplift associated with the disassembly of southwestern Gondwana and (ii) an Early Cretaceous uplift related with the separation between Antarctica and Australia, which is also recorded in the Transantarctic Mountains. 
    more » « less