skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2138147

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A pulsar’s scintillation bandwidth is inversely proportional to the scattering delay, making accurate measurements of scintillation bandwidth critical to characterize unmitigated delays in efforts to measure low-frequency gravitational waves with pulsar timing arrays. In this pilot work, we searched for a subset of known pulsars within ∼97% of the data taken with the Puerto Rico Ultimate Pulsar Processing Instrument for the AO327 survey with the Arecibo telescope, attempting to measure the scintillation bandwidths in the data set by fitting to the 2D autocorrelation function of their dynamic spectra. We successfully measured 38 bandwidths from 23 pulsars (six without prior literature values), finding that: almost all of the measurements are larger than the predictions from NE2001 and YMW16 (two popular galactic models); NE2001 is more consistent with our measurements than YMW16; Gaussian fits to the bandwidth are more consistent with both electron density models than Lorentzian ones; and for the 17 pulsars with prior literature values, the measurements between various sources often vary by a few factors. The success of Gaussian fits may be due to the use of Gaussian fits to train models in previous work. The variance of literature values over time could relate to the scaling factor used to compare measurements, but also seems consistent with time-varying interstellar medium parameters. This work can be extended to the rest of AO327 to further investigate these trends, highlighting the continuing importance of large archival data sets for projects beyond their initial conception. 
    more » « less
    Free, publicly-accessible full text available November 26, 2025
  2. Abstract The search for extraterrestrial intelligence at radio frequencies has focused on spatial filtering as a primary discriminant from terrestrial interference. Individual search campaigns further choose targets or frequencies based on criteria that theoretically maximize the likelihood of detection, serving as high-level filters for interesting targets. Most filters for technosignatures do not rely on intrinsic signal properties, as the radio-frequency interference (RFI) environment is difficult to characterize. In B. Brzycki et al. (2023), we proposed that the effects of interstellar medium (ISM) scintillation on narrowband technosignatures may be detectable under certain conditions. In this work, we perform a dedicated survey for scintillated technosignatures toward the Galactic center and Galactic plane at theCband (3.95–8.0 GHz) using the Robert C. Byrd Green Bank Telescope (GBT) as part of the Breakthrough Listen program. We conduct a Doppler drift search and directional filter to identify potential candidates and analyze results for evidence of scintillation. We characterize theC-band RFI environment at the GBT across multiple observing sessions spread over months and detect RFI signals with confounding scintillation-like intensity modulation. We do not find evidence of putative narrowband transmitters with drift rates between ±10 Hz s−1toward the Galactic center, ISM-scintillated or otherwise, above an equivalent isotropic radiated power of 1.9 × 1017W up to 8.5 kpc. 
    more » « less
  3. Abstract Planet–planet occultations (PPOs) occur when one exoplanet occults another exoplanet in the same system, as seen from the Earth’s vantage point. PPOs may provide a unique opportunity to observe radio “spillover” from extraterrestrial intelligences’ radio transmissions or radar being transmitted from the farther exoplanet toward the nearer one for the purposes of communication or scientific exploration. Planetary systems with many tightly packed, low-inclination planets, such as TRAPPIST-1, are predicted to have frequent PPOs. Here, the narrowband technosignature search codeturboSETIwas used in combination with the newly developedNbeamAnalysisfiltering pipeline to analyze 28 hr of beamformed data taken with the Allen Telescope Array during 2022 late October and early November, from 0.9 to 9.3 GHz, targeting TRAPPIST-1. During this observing window, seven possible PPO events were predicted using theNbodyGradientcode. The filtering pipeline reduced the original list of 25 million candidate signals down to 6 million by rejecting signals that were not sky-localized and, from these, identified a final list of 11,127 candidate signals above a power-law cutoff designed to segregate signals by their attenuation and morphological similarity between beams. All signals were plotted for visual inspection, 2264 of which were found to occur during PPO windows. We report no detections of signals of nonhuman origin, with upper limits calculated for each PPO event exceeding equivalent isotropic radiated powers of 2.17–13.3 TW for minimally drifting signals and 40.8–421 TW in the maximally drifting case. This work constitutes the longest single-target radio search for extraterrestrial intelligence of TRAPPIST-1 to date. 
    more » « less
  4. Abstract The SETI Ellipsoid is a strategy for technosignature candidate selection that assumes that extraterrestrial civilizations who have observed a galactic-scale event—such as supernova 1987A—may use it as a Schelling point to broadcast synchronized signals indicating their presence. Continuous wide-field surveys of the sky offer a powerful new opportunity to look for these signals, compensating for the uncertainty in their estimated time of arrival. We explore sources in the TESS continuous viewing zone, which corresponds to 5% of all TESS data, observed during the first 3 yr of the mission. Using improved 3D locations for stars from Gaia Early Data Release 3, we identified 32 SN 1987A SETI Ellipsoid targets in the TESS continuous viewing zone with uncertainties better than 0.5 lt-yr. We examined the TESS light curves of these stars during the Ellipsoid crossing event and found no anomalous signatures. We discuss ways to expand this methodology to other surveys, more targets, and different potential signal types. 
    more » « less
  5. Abstract Recently the James Webb Space Telescope performed near-infrared spectroscopic observations of the atmosphere of a potential Hycean exoplanet, K2-18 b. These spectra provided evidence of methane and carbon dioxide in its atmosphere, along with a possible line attributed to biomarker dimethyl sulfide. In this work, we present triggered narrow-band radio observations of K2-18 b conducted using the Allen Telescope Array over 3–10 GHz, in search of signs of artificially produced radio emissions (technosignatures). We do not find any spatially isolated signals in the direction of K2-18 b, establishing lower and upper limits on the equivalent isotropic radiated power (∼1013–1016 W) of potential extraterrestrial transmitters between 3 and 10 GHz. This study emphasizes the importance of ongoing observations to further explore K2-18 b’s potential as a candidate for the detection of technosignatures. 
    more » « less
  6. Abstract The Breakthrough Listen search for intelligent life is, to date, the most extensive technosignature search of nearby celestial objects. We present a radio technosignature search of the centers of 97 nearby galaxies, observed by Breakthrough Listen at the Robert C. Byrd Green Bank Telescope. We performed a narrowband Doppler drift search using theturboSETIpipeline with a minimum signal-to-noise parameter threshold of 10, across a drift rate range of ±4 Hz s−1, with a spectral resolution of 3 Hz and a time resolution of ∼18.25 s. We removed radio frequency interference (RFI) by using an on-source/off-source cadence pattern of six observations and discarding signals with Doppler drift rates of 0. We assess factors affecting the sensitivity of the Breakthrough Listen data reduction and search pipeline using signal injection and recovery techniques and apply new methods for the investigation of the RFI environment. We present results in four frequency bands covering 1–11 GHz, and place constraints on the presence of transmitters with equivalent isotropic radiated power on the order of 1026W, corresponding to the theoretical power consumption of Kardashev Type II civilizations. 
    more » « less
  7. Abstract To date, the search for radio technosignatures has focused on sky location as a primary discriminant between technosignature candidates and anthropogenic radio frequency interference (RFI). In this work, we investigate the possibility of searching for technosignatures by identifying the presence and nature of intensity scintillations arising from the turbulent, ionized plasma of the interstellar medium. Past works have detailed how interstellar scattering can both enhance and diminish the detectability of narrowband radio signals. We use the NE2001 Galactic free electron density model to estimate scintillation timescales to which narrowband signal searches would be sensitive, and discuss ways in which we might practically detect strong intensity scintillations in detected signals. We further analyze the RFI environment of the Robert C. Byrd Green Bank Telescope with the proposed methodology and comment on the feasibility of using scintillation as a filter for technosignature candidates. 
    more » « less
  8. ABSTRACT FRB 20220912A is a repeating Fast Radio Burst (FRB) that was discovered in Fall 2022 and remained highly active for several months. We report the detection of 35 FRBs from 541 h of follow-up observations of this source using the recently refurbished Allen Telescope Array, covering 1344 MHz of bandwidth primarily centred at 1572 MHz. All 35 FRBs were detected in the lower half of the band with non-detections in the upper half and covered fluences from 4–431 Jy-ms (median = 48.27 Jy-ms). We find consistency with previous repeater studies for a range of spectrotemporal features including: bursts with downward frequency drifting over time; a positive correlation between bandwidth and centre frequency; and a decrease in sub-burst duration over time. We report an apparent decrease in the centre frequency of observed bursts over the two months of the observing campaign (corresponding to a drop of 6.21 ± 0.76 MHz per d). We predict a cut-off fluence for FRB 20220912A of Fmax ≲ 104 Jy-ms, for this source to be consistent with the all-sky rate, and find that FRB 20220912A significantly contributed to the all-sky FRB rate at a level of a few per cent for fluences of ∼100 Jy-ms. Finally, we investigate characteristic time-scales and sub-burst periodicities and find (a) a median inter-subburst time-scale of 5.82 ± 1.16 ms in the multi-component bursts and (b) no evidence of strict periodicity even in the most evenly spaced multi-component burst in the sample. Our results demonstrate the importance of wideband observations of FRBs, and provide an important set of observational parameters against which to compare FRB progenitor and emission mechanism models. 
    more » « less
  9. Abstract A stable-frequency transmitter with relative radial acceleration to a receiver will show a change in received frequency over time, known as a “drift rate.” For a transmission from an exoplanet, we must account for multiple components of drift rate: the exoplanet’s orbit and rotation, the Earth’s orbit and rotation, and other contributions. Understanding the drift rate distribution produced by exoplanets relative to Earth, can (a) help us constrain the range of drift rates to check in a Search for Extraterrestrial Intelligence project to detect radio technosignatures, and (b) help us decide validity of signals-of-interest, as we can compare drifting signals with expected drift rates from the target star. In this paper, we modeled the drift rate distribution for ∼5300 confirmed exoplanets, using parameters from the NASA Exoplanet Archive (NEA). We find that confirmed exoplanets have drift rates such that 99% of them fall within the ±53 nHz range. This implies a distribution-informed maximum drift rate ∼4 times lower than previous work. To mitigate the observational biases inherent in the NEA, we also simulated an exoplanet population built to reduce these biases. The results suggest that, for a Kepler-like target star without known exoplanets, ±0.44 nHz would be sufficient to account for 99% of signals. This reduction in recommended maximum drift rate is partially due to inclination effects and bias toward short orbital periods in the NEA. These narrowed drift rate maxima will increase the efficiency of searches and save significant computational effort in future radio technosignature searches. 
    more » « less
  10. Abstract The deaths of massive stars are sometimes accompanied by the launch of highly relativistic and collimated jets. If the jet is pointed towards Earth, we observe a ‘prompt’ gamma-ray burst due to internal shocks or magnetic reconnection events within the jet, followed by a long-lived broadband synchrotron afterglow as the jet interacts with the circumburst material. While there is solid observational evidence that emission from multiple shocks contributes to the afterglow signature, detailed studies of the reverse shock, which travels back into the explosion ejecta, are hampered by a lack of early-time observations, particularly in the radio band. We present rapid follow-up radio observations of the exceptionally bright gamma-ray burst GRB 221009A that reveal in detail, both temporally and in frequency space, an optically thick rising component from the reverse shock. From this, we are able to constrain the size, Lorentz factor and internal energy of the outflow while providing accurate predictions for the location of the peak frequency of the reverse shock in the first few hours after the burst. These observations challenge standard gamma-ray burst models describing reverse shock emission. 
    more » « less