- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Audesse, Simone (1)
-
Barra, Julian (1)
-
Chahal, Rajni (1)
-
Julián Barra Otondo, Shayan Shahbazi (1)
-
Kabel, Joey (1)
-
Lam, Stephen (1)
-
Zhang, Jize (1)
-
Zhong, Yu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Julián Barra Otondo, Shayan Shahbazi (, Transactions of the American Nuclear Society)For the development and optimization of molten salt reactors, nuclear fuel cycles, and energy storage materials, the temperature-dependent molten salt properties must be known over a wide range of possible compositions. Yet, for several relevant chloride and fluoride salt systems, significant gaps in data still exist, which inhibit the development of key advanced energy technologies. [1] Filling all of these gaps with high-temperature experiments is inherently challenging, especially due to the corrosive, volatile, and hazardous nature of these salts. Meanwhile, carefully validated atomistic simulations (ab initio, classical or machine learning-based) are capable of predicting thermophysical properties but are highly computationally expensive [2-5], limiting our ability to screen over large temperature-compositional spaces. In this work, we propose to circumvent these limitations by using supervised machine learning (ML) models to learn from existing bulk density data and predict densities of new and unseen mixtures.more » « less
An official website of the United States government
