skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2138701

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A potentiostat is an analytical device and a crucial component in electrochemical instruments used for studying chemical reaction mechanisms, with potential applications in early diagnosis of disease or critical health conditions. Conventional potentiostats are typically benchtop devices designed for laboratory use, whereas a wearable potentiostat can be interfaced with biochemical sensors for disease diagnostics at home. This work presents a low-power potentiostat designed to connect with a sensor array consisting of eight to ten working electrodes. The potentiostat is capable of running Electrochemical Impedance Spectroscopy and Cyclic Voltammetry. The system is powered by lithium-ion batteries and uses Bluetooth for data transmission to the user. A single ARM M4 microcontroller, integrated with a Bluetooth low-energy radio module, controls the entire system. The accuracy, reliability, and power efficiency of the potentiostat were evaluated and compared against existing commercial benchtop potentiostats. Additionally, we have outlined future steps to enhance circuit miniaturization and power efficiency, aiming to develop fully integrated wearable sensing devices comparable in size to a wristwatch. 
    more » « less
  2. This work reports a first-of-its-kind hybrid wearable physicochemical sensor suite that we call PlantFit for simultaneous measurement of two key phytohormones, salicylic acid, and ethylene, along with vapor pressure deficit and radial growth of stem in live plants. The sensors are developed using a low-cost and roll-to-roll screen printing technology. A single integrated flexible patch that contains temperature, humidity, salicylic acid, and ethylene sensors, is installed on the leaves of live plants. The strain sensor with in-built pressure correction capability is wrapped around the plant stem to provide pressure-compensated stem diameter measurements. The sensors provide real-time information on plant health under different amounts of water stress conditions. The sensor suite is installed on bell pepper plants for 40 days and measurements of salicylic acid, ethylene, temperature, humidity, and stem diameter are recorded daily. In addition, sensors are installed on different parts of the same plant to investigate the spatiotemporal dynamics of water transport and phytohormone responses. Subsequent correlation and principal component analyses demonstrate the strong association between hormone levels, vapor pressure deficit, and water transport in the plant. Our findings suggest that the mass deployment of PlantFit in agricultural settings will aid growers in detecting water stress/deficiency early and in implementing early intervention measures to reduce stress-induced yield decline. 
    more » « less
  3. Identifying disease biomarkers and detecting hazardous, explosive, flammable, and polluting gases and chemicals with extremely sensitive and selective sensor devices remains a challenging and time-consuming research challenge. Due to their exceptional characteristics, semiconducting metal oxides (SMOxs) have received a lot of attention in terms of the development of various types of sensors in recent years. The key performance indicators of SMOx-based sensors are their sensitivity, selectivity, recovery time, and steady response over time. SMOx-based sensors are discussed in this review based on their different properties. Surface properties of the functional material, such as its (nano)structure, morphology, and crystallinity, greatly influence sensor performance. A few examples of the complicated and poorly understood processes involved in SMOx sensing systems are adsorption and chemisorption, charge transfers, and oxygen migration. The future prospects of SMOx-based gas sensors, chemical sensors, and biological sensors are also discussed. 
    more » « less
  4. Plant-microbe interactions are critical for ecosystem functioning and driving rhizosphere processes. To fully understand the communication pathways between plants and rhizosphere microbes, it is crucial to measure the numerous processes that occur in the plant and the rhizosphere. The present review first provides an overview of how plants interact with their surrounding microbial communities, and in turn, are affected by them. Next, different optical biosensing technologies that elucidate the plant-microbe interactions and provide pathogenic detection are summarized. Currently, most of the biosensors used for detecting plant parameters or microbial communities in soil are centered around genetically encoded optical and electrochemical biosensors that are often not suitable for field applications. Such sensors require substantial effort and cost to develop and have their limitations. With a particular focus on the detection of root exudates and phytohormones under biotic and abiotic stress conditions, novel low-cost and in-situ biosensors must become available to plant scientists. 
    more » « less