skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2138869

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Machine learning provides a promising platform for both forward modeling and the inverse design of photonic structures. Relying on a data-driven approach, machine learning is especially appealing for situations when it is not feasible to derive an analytical solution for a complex problem. There has been a great amount of recent interest in constructing machine learning models suitable for different electromagnetic problems. In this work, we adapt a region-specified design approach for the inverse design of multilayered nanoparticles. Given the high computational cost of dataset generation for electromagnetic problems, we specifically investigate the case of a small training dataset, enhanced via random region specification in an inverse convolutional neural network. The trained model is used to design nanoparticles with high absorption levels and different ratios of absorption over scattering. The central design wavelength is shifted across 350–700 nm without re-training. We discuss the implications of wavelength, particle size, and the training dataset size on the performance of the model. Our approach may find interesting applications in the design of multilayer nanoparticles for biological, chemical, and optical applications as well as the design of low-scattering absorbers and antennas. 
    more » « less
  2. Rubinsztein-Dunlop, Halina; Dholakia, Kishan; Volpe, Giovanni (Ed.)