skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2139462

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a new type of characteristic sets of difference polynomials using a generalization of the concept of effective order to the case of partial difference polynomials and a partition of the basic set of translations σ. Using properties of these characteristic sets, we prove the existence and outline a method of computation of a multivariate dimension polynomial of a finitely generated difference field extension that describes the transcendence degrees of intermediate fields obtained by adjoining transforms of the generators whose orders with respect to the components of the partition of σ are bounded by two sequences of natural numbers. We show that such dimension polynomials carry essentially more invariants (that is, characteristics of the extension that do not depend on the set of its difference generators) than previously known difference dimension polynomials. In particular, a dimension polynomial of the new type associated with a system of algebraic difference equations gives more information about the system than the classical univariate difference dimension polynomial. 
    more » « less
  2. General Chair: Marc Moreno Chair: Lihong Zhi (Ed.)
    We introduce a new type of reduction in a free difference module over a difference field that uses a generalization of the concept of effective order of a difference polynomial. Then we define the concept of a generalized characteristic set of such a module, establish some properties of these characteristic sets and use them to prove the existence, outline a method of computation and find invariants of a dimension polynomial in two variables associated with a finitely generated difference module. As a consequence of these results, we obtain a new type of bivariate dimension polynomials of finitely generated difference field extensions. We also explain the relationship between these dimension polynomials and the concept of Einstein’s strength of a system of difference equations. 
    more » « less