Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Partitioning networks into communities of densely connected nodes is an important tool used widely across different applications, with numerous methods and software packages available for community detection. Modularity-based methods require parameters to be selected (or assume defaults) to control the resolution and, in multilayer networks, interlayer coupling. Meanwhile, most useful algorithms are heuristics yielding different near-optimal results upon repeated runs (even at the same parameters). To address these difficulties, we combine recent developments into a simple-to-use framework for pruning a set of partitions to a subset that are self-consistent by an equivalence with the objective function for inference of a degree-corrected planted partition stochastic block model (SBM). Importantly, this combined framework reduces some of the problems associated with the stochasticity that is inherent in the use of heuristics for optimizing modularity. In our examples, the pruning typically highlights only a small number of partitions that are fixed points of the corresponding map on the set of somewhere-optimal partitions in the parameter space. We also derive resolution parameter upper bounds for fitting a constrained SBM ofKblocks and demonstrate that these bounds hold in practice, further guiding parameter space regions to consider. With publicly available code (http://github.com/ragibson/ModularityPruning), our pruning procedure provides a new baseline for using modularity-based community detection in practice.more » « less
-
Free, publicly-accessible full text available August 1, 2026
-
The use of network analysis as a tool has increased exponentially as more clinical researchers see the benefits of network data for modeling of infectious disease transmission or translational activities in a variety of areas, including patient-caregiving teams, provider networks, patient-support networks, and adoption of health behaviors or treatments, to name a few. Yet, relational data such as network data carry a higher risk of deductive disclosure. Cases of reidentification have occurred and this is expected to become more common as computational ability increases. Recent data sharing policies aim to promote reproducibility, support replicability, and protect federal investment in the effort to collect these research data by making them available for secondary analyses. However, typical practices to protect individual-level clinical research data may not be sufficiently protective of participant privacy in the case of network data, nor in some cases do they permit secondary data analysis. When sharing data, researchers must balance security, accessibility, reproducibility, and adaptability (suitability for secondary analyses). Here, we provide background about applying network analysis to health and clinical research, describe the pros and cons of applying typical practices for sharing clinical data to network data, and provide recommendations for sharing network data.more » « lessFree, publicly-accessible full text available February 1, 2026
-
A suite of convenient tools for social network analysis geared toward students, entry-level users, and non-expert practitioners. ‘ideanet’ features unique functions for the processing and measurement of sociocentric and egocentric network data. These functions automatically generate node- and system-level measures commonly used in the analysis of these types of networks. Outputs from these functions maximize the ability of novice users to employ network measurements in further analyses while making all users less prone to common data analytic errors. Additionally, ‘ideanet’ features an R Shiny graphic user interface that allows novices to explore network data with minimal need for coding.more » « less
An official website of the United States government
