skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2140374

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The electrochemical hydrogenation (e‐hydrogenation) of unsaturated compounds like imines or carbonyls presents a benign reduction method. It enables direct use of electrons as reducing agent, water as proton source, while bypassing the need for elevated temperatures or pressures. In this contribution, we discuss the active species in electrocatalytic reductive amination with the transformation of acetone and methylamine as model reaction. Surprisingly, lead impurities in the ppm‐range proved to possess a significant effect in e‐hydrogenation. Accordingly, the influence of applied potential and cathode material in presence of 1 ppm Pb was investigated. Finally, we transferred the insights to the reduction of acetone manifesting comparable observations as for imine reduction. The results suggest that previous studies on electrochemical reduction in the presence of lead electrodes should be re‐evaluated. 
    more » « less
  2. Copper electrodes corrode using mixtures of acetone and methylamine even under reductive potential conditions. Simulations explain this dynamical process from a microscopic perspective through the formation of a surface Cu–amine complex. 
    more » « less