- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Netravali, Ravi (4)
-
Ramanujam, Murali (2)
-
Agarwal, Neil (1)
-
Chen, Helen (1)
-
Jamieson, Kyle (1)
-
Li, Zhuqi (1)
-
Madhyastha, Harsha V. (1)
-
Mardani, Shaghayegh (1)
-
Pan, Rui (1)
-
Xie, Yaxiong (1)
-
Yan, Francis (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 28, 2026
-
Li, Zhuqi; Xie, Yaxiong; Netravali, Ravi; Jamieson, Kyle (, 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI))
-
Ramanujam, Murali; Chen, Helen; Mardani, Shaghayegh; Netravali, Ravi (, 20th Annual International Conference on Mobile Systems, Applications, and Services)
-
Ramanujam, Murali; Madhyastha, Harsha V.; Netravali, Ravi (, 19th Annual International Conference on Mobile Systems, Applications, and Services)Low interaction response times are crucial to the experience that mobile apps provide for their users. Unfortunately, existing strategies to alleviate the network latencies that hinder app responsiveness fall short in practice. In particular, caching is plagued by challenges in setting expiration times that match when a resource's content changes, while prefetching hinges on accurate predictions of user behavior that have proven elusive. We present Marauder, a system that synergizes caching and prefetching to improve the speedups achieved by each technique while avoiding their inherent limitations. Key to Marauder is our observation that, like web pages, apps handle interactions by downloading and parsing structured text resources that entirely list (i.e., without needing to consult app binaries) the set of other resources to load. Building on this, Marauder introduces two low-risk optimizations directly from the app's cache. First, guided by cached text files, Marauder prefetches referenced resources during an already-triggered interaction. Second, to improve the efficacy of cached content, Marauder judiciously prefetches about-to-expire resources, extending cache lives for unchanged resources, and downloading updates for lightweight (but crucial) text files. Across a wide range of apps, live networks, interaction traces, and phones, Marauder reduces median and 90th percentile interaction response times by 27.4% and 43.5%, while increasing data usage by only 18%.more » « less
An official website of the United States government

Full Text Available