Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Cyber-enabled manufacturing systems are becoming increasingly data-rich, generating vast amounts of real-time sensor data for quality control and process optimization. However, this proliferation of data also exposes these systems to significant cyber-physical security threats. For instance, malicious attackers may delete, change, or replace original data, leading to defective products, damaged equipment, or operational safety hazards. False data injection attacks can compromise machine learning models, resulting in erroneous predictions and decisions. To mitigate these risks, it is crucial to employ robust data processing techniques that can adapt to varying process conditions and detect anomalies in real-time. In this context, the incremental machine learning (IML) approaches can be valuable, allowing models to be updated incrementally with newly collected data without retraining from scratch. Moreover, although recent studies have demonstrated the potential of blockchain in enhancing data security within manufacturing systems, most existing security frameworks are primarily based on cryptography, which does not sufficiently address data quality issues. Thus, this study proposes a gatekeeper mechanism to integrate IML with blockchain and discusses how this integration could potentially increase the data integrity of cyber-enabled manufacturing systems. The proposed IML-integrated blockchain can address the data security concerns from both intentional alterations (e.g., malicious tampering) and unintentional alterations (e.g., process anomalies and outliers). The real-world case study results show that the proposed gatekeeper integration algorithm can successfully filter out over 80% of malicious data entries while maintaining comparable classification performance to standard IML models. Furthermore, the integration of blockchain enables effective detection of tampering attempts, ensuring the trustworthiness of the stored information.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract The advancement of sensing technology enables efficient data collection from manufacturing systems for monitoring and control. Furthermore, with the rapid development of the Internet of Things (IoT) and information technologies, more and more manufacturing systems become cyber-enabled, facilitating real-time data sharing and information exchange, which significantly improves the flexibility and efficiency of manufacturing systems. However, the cyber-enabled environment may pose the collected sensor data under high risks of cyber-physical attacks during the data and information sharing. Specifically, cyber-physical attacks could target the manufacturing process and/or the data transmission process to maliciously tamper the sensor data, resulting in false alarms or failures in anomaly detection in monitoring. In addition, the cyber-physical attacks may also enable illegal data access without authorization and cause the leakage of key product/process information. Therefore, it becomes critical to develop an effective approach to protect data from these attacks so that the cyber-physical security of the manufacturing systems could be assured in the cyber-enabled environment. To achieve this goal, this paper proposes an integrative blockchain-enabled data protection method by leveraging camouflaged asymmetry encryption. A real-world case study that protects cyber-physical security of collected sensor data in additive manufacturing is presented to demonstrate the effectiveness of the proposed method. The results demonstrate that malicious tampering could be detected in a relatively short time (less than 0.05ms) and the risk of unauthorized data access is significantly reduced as well.more » « less
- 
            The increasing amount of data and the growing use of them in the information era have raised questions about the quality of data and its impact on the decision-making process. Currently, the importance of high-quality data is widely recognized by researchers and decision-makers. Sewer inspection data have been collected for over three decades, but the reliability of the data was questionable. It was estimated that between 25% and 50% of sewer inspection data is not usable due to data quality problems. In order to address reliability problems, a data quality evaluation framework is developed. Data quality evaluation is a multi-dimensional concept that includes both subjective perceptions and objective measurements. Five data quality metrics were defined to assess different quality dimensions of the sewer inspection data, including Accuracy, Consistency, Completeness, Uniqueness, and Validity. These data quality metrics were calculated for the collected sewer inspection data, and it was found that consistency and uniqueness are the major problems based on the current practices with sewer pipeline inspection. This paper contributes to the overall body of knowledge by providing a robust data quality evaluation framework for sewer system data for the first time, which will result in quality data for sewer asset management.more » « less
- 
            As a pervasive issue, missing data may influence the data modeling performance and lead to more difficulties of completing the desired tasks. Many approaches have been developed for missing data imputation. Recently, by taking advantage of the emerging generative adversarial network (GAN), an effective missing data imputation approach termed generative adversarial imputation nets (GAIN) was developed. However, its modeling architecture may still lead to significant imputation bias. In addition, with the GAN structure, the training process of GAIN may be unstable and the imputation variation may be high. Hence, to address these two limitations, the ensemble GAIN with selective multi-generator (ESM-GAIN) is proposed to improve the imputation accuracy and robustness. The contributions of the proposed ESM-GAIN consist of two aspects: (1) a selective multi-generation framework is proposed to identify high-quality imputations; (2) an ensemble learning framework is incorporated for GAIN imputation to improve the imputation robustness. The effectiveness of the proposed ESM-GAIN is validated by both numerical simulation and two real-world breast cancer datasets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
