- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Tartakovsky, Alexandre M (4)
-
Zong, Yifei (3)
-
Barajas-Solano, David (2)
-
Brooks, Scott C (1)
-
Cao, Huiping (1)
-
Carroll, Kenneth C (1)
-
Hughes, Joseph D (1)
-
Jamil, Ahsan (1)
-
Lu, Dan (1)
-
McCreight, James L (1)
-
Rucker, Dale F (1)
-
Wang, Yuanzhe (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Zong, Yifei; Barajas-Solano, David; Tartakovsky, Alexandre M (, Journal of Computational Physics)Free, publicly-accessible full text available December 1, 2025
-
Jamil, Ahsan; Rucker, Dale F; Lu, Dan; Brooks, Scott C; Tartakovsky, Alexandre M; Cao, Huiping; Carroll, Kenneth C (, Journal of Applied Geophysics)This study evaluates the performance of multiple machine learning (ML) algorithms and electrical resistivity (ER) arrays for inversion with comparison to a conventional Gauss-Newton numerical inversion method. Four different ML models and four arrays were used for the estimation of only six variables for locating and characterizing hypothetical subsurface targets. The combination of dipole-dipole with Multilayer Perceptron Neural Network (MLP-NN) had the highest accuracy. Evaluation showed that both MLP-NN and Gauss-Newton methods performed well for estimating the matrix resistivity while target resistivity accuracy was lower, and MLP-NN produced sharper contrast at target boundaries for the field and hypothetical data. Both methods exhibited comparable target characterization performance, whereas MLP-NN had increased accuracy compared to Gauss-Newton in prediction of target width and height, which was attributed to numerical smoothing present in the Gauss-Newton approach. MLP-NN was also applied to a field dataset acquired at U.S. DOE Hanford site.more » « less
-
Wang, Yuanzhe; Zong, Yifei; McCreight, James L; Hughes, Joseph D; Tartakovsky, Alexandre M (, Computer Methods in Applied Mechanics and Engineering)
An official website of the United States government
