skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2141790

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 5, 2026
  2. Psychological test scores are commonly used in high-stakes settings to classify individuals. While measurement invariance across groups is necessary for valid and meaningful inferences of group differences, full measurement invariance rarely holds in practice. The classification accuracy analysis framework aims to quantify the degree and practical impact of noninvariance. However, how to best navigate the next steps remains unclear, and methods devised to account for noninvariance at the group level may be insufficient when the goal is classification. Furthermore, deleting a biased item may improve fairness but negatively affect performance, and replacing the test can be costly. We propose item-level effect size indices that allow test users to make more informed decisions by quantifying the impact of deleting (or retaining) an item on test performance and fairness, provide an illustrative example, and introduce unbiasr, an R package implementing the proposed methods. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025