Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract More than 60 years ago, James Neel proposed the Thrifty Genotype Hypothesis to explain the widespread prevalence of type 2 diabetes in Western, industrial contexts. This hypothesis posits that variants linked to conservative energy usage and increased fat deposition would have been favored throughout human evolution due to the advantages they could provide during periods of resource limitation. However, in industrial environments, these variants instead produce an increased risk of obesity, metabolic syndrome, type 2 diabetes, and related health issues. This hypothesis has been popular and impactful, with thousands of citations, many ongoing debates, and several spin-off theories in biomedicine, evolutionary biology, and anthropology. However, despite great attention, the applicability and utility of the Thrifty Genotype Hypothesis (TGH) to modern human health remains, in our opinion, unresolved. To move research in this area forward, we first discuss the original formulation of the TGH and its critiques. Second, we trace the TGH to updated hypotheses that are currently at the forefront of the evolutionary medicine literature—namely, the Evolutionary Mismatch Hypothesis. Third, we lay out empirical predictions for updated hypotheses and evaluate them against the current literature. Finally, we discuss study designs that could be fruitful for filling current knowledge gaps; here, we focus on partnerships with subsistence-level groups undergoing lifestyle transitions, and we present data from an ongoing study with the Orang Asli of Malaysia to illustrate this point. Overall, we hope this synthesis will guide new empirical research aimed at understanding how the human evolutionary past interacts with our modern environments to influence cardiometabolic health.more » « less
-
Free, publicly-accessible full text available June 30, 2026
-
Sproul, Duncan (Ed.)Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, development, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies is currently lacking. To address this gap, we optimized the Targeted Methylation Sequencing protocol (TMS)—which profiles ~4 million CpG sites—for miniaturization, flexibility, and multispecies use. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n = 55 paired samples) and whole genome bisulfite sequencing (n = 6 paired samples). In both cases, we found strong agreement between technologies (R2 = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean = 77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R2 = 0.98). Finally, we confirmed that estimates of 1) epigenetic age and 2) tissue-specific DNA methylation patterns are strongly recapitulated using data generated from TMS versus other technologies. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Noncommunicable diseases (NCDs) are on the rise worldwide. Obesity, cardiovascular disease, and type 2 diabetes are among a long list of “lifestyle” diseases that were rare throughout human history but are now common. The evolutionary mismatch hypothesis posits that humans evolved in environments that radically differ from those we currently experience; consequently, traits that were once advantageous may now be “mismatched” and disease causing. At the genetic level, this hypothesis predicts that loci with a history of selection will exhibit “genotype by environment” (GxE) interactions, with different health effects in “ancestral” versus “modern” environments. To identify such loci, we advocate for combining genomic tools in partnership with subsistence-level groups experiencing rapid lifestyle change. In these populations, comparisons of individuals falling on opposite extremes of the “matched” to “mismatched” spectrum are uniquely possible. More broadly, the work we propose will inform our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and cultures.more » « less
-
Introduction Non-communicable disease (NCD) risk is influenced by environmental factors that are highly variable worldwide, yet prior research has focused mainly on high-income countries where most people are exposed to relatively homogeneous and static environments. Understanding the scope and complexity of environmental influences on NCD risk around the globe requires more data from people living in diverse and changing environments. Our project will investigate the prevalence and environmental causes of NCDs among the indigenous peoples of Peninsular Malaysia, known collectively as the Orang Asli, who are currently undergoing varying degrees of lifestyle and sociocultural changes that are predicted to increase vulnerability to NCDs, particularly metabolic disorders and musculoskeletal degenerative diseases. Methods and analysis Biospecimen sampling and screening for a suite of NCDs (eg, cardiovascular disease, type II diabetes, osteoarthritis and osteoporosis), combined with detailed ethnographic work to assess key lifestyle and sociocultural variables (eg, diet, physical activity and wealth), will take place in Orang Asli communities spanning a gradient from remote, traditional villages to acculturated, market-integrated urban areas. Analyses will first test for relationships between environmental variables, NCD risk factors and NCD occurrence to investigate how environmental changes are affecting NCD susceptibility among the Orang Asli. Second, we will examine potential molecular and physiological mechanisms (eg, epigenetics and systemic inflammation) that mediate environmental effects on health. Third, we will identify intrinsic (eg, age and sex) and extrinsic (eg, early-life experiences) factors that predispose certain people to NCDs in the face of environmental change to better understand which Orang Asli are at greatest risk of NCDs. Ethics and dissemination Approval was obtained from multiple ethical review boards including the Malaysian Ministry of Health. This study follows established principles for ethical biomedical research among vulnerable indigenous communities, including fostering collaboration, building cultural competency, enhancing transparency, supporting capacity building and disseminating research findings.more » « less
An official website of the United States government
