Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Internet has been progressively more integrated into daily life through its evolutionary stages, ranging from web1.0 to the current development of web3.0. These continued integrations broaden the attack surface that cybercriminals aim to exploit. The prevalence of cybercrimes, particularly malware attacks, has become increasingly sophisticated and made more accessible through dark web marketplaces. Including artificial intelligence (AI) within anti-virus solutions has challenged the traditional dichotomy of malware detection schemes, offering more accurate and holistic detection capabilities. Research has shown that transforming malware files into textured images offers resistance to obfuscation and the potential to detect zero days. This paper explores the application of image quality assessment (IQA) techniques in enhancing visual malware dataset curation. We propose a novel framework that applies a no-reference IQA algorithm to evaluate current datasets and offer guidance in future dataset curation. Using multiple popular datasets, our evaluation demonstrates that the proposed MalScore framework effectively differentiates dataset quality—for example, MalNet Tiny achieves the highest score of 95%, while the NARAD malicious-image subset scores 50%. Additionally, BRISQUE was the only IQA algorithm to exhibit a strong linear sensitivity to blur levels across datasets. These results highlight the practical utility of MalScore in assessing and ranking visual malware datasets and lay the groundwork for uniting IQA and visual malware detection in future research.more » « less
-
Quantization-Based Optimization Algorithm for Hardware Implementation of Convolution Neural NetworksConvolutional neural networks (CNNs) have demonstrated remarkable performance in many areas but require significant computation and storage resources. Quantization is an effective method to reduce CNN complexity and implementation. The main research objective is to develop a scalable quantization algorithm for CNN hardware design and model the performance metrics for the purpose of CNN implementation in resource-constrained devices (RCDs) and optimizing layers in deep neural networks (DNNs). The algorithm novelty is based on blending two quantization techniques to perform full model quantization with optimum accuracy, and without additional neurons. The algorithm is applied to a selected CNN model and implemented on an FPGA. Implementing CNN using broad data is not possible due to capacity issues. With the proposed quantization algorithm, we succeeded in implementing the model on the FPGA using 16-, 12-, and 8-bit quantization. Compared to the 16-bit design, the 8-bit design offers a 44% decrease in resource utilization, and achieves power and energy reductions of 41% and 42%, respectively. Models show that trading off one quantization bit yields savings of approximately 5.4K LUTs, 4% logic utilization, 46.9 mW power, and 147 μJ energy. The models were also used to estimate performance metrics for a sample DNN design.more » « less
An official website of the United States government

Full Text Available