Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We study a class of Approximate Message Passing (AMP) algorithms for symmetric and rectangular spiked random matrix models with orthogonally invariant noise. The AMP iterates have fixed dimension $$K \geq 1$$, a multivariate non-linearity is applied in each AMP iteration, and the algorithm is spectrally initialized with $$K$$ super-critical sample eigenvectors. We derive the forms of the Onsager debiasing coefficients and corresponding AMP state evolution, which depend on the free cumulants of the noise spectral distribution. This extends previous results for such models with $K=1$ and an independent initialization. Applying this approach to Bayesian principal components analysis, we introduce a Bayes-OAMP algorithm that uses as its non-linearity the posterior mean conditional on all preceding AMP iterates. We describe a practical implementation of this algorithm, where all debiasing and state evolution parameters are estimated from the observed data, and we illustrate the accuracy and stability of this approach in simulations.more » « less
-
Free, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available August 1, 2025
-
Many recent works have studied the eigenvalue spectrum of the Conjugate Kernel (CK) defined by the nonlinear feature map of a feedforward neural network. However, existing results only establish weak convergence of the empirical eigenvalue distribution, and fall short of providing precise quantitative characterizations of the “spike” eigenvalues and eigenvectors that often capture the low-dimensional signal structure of the learning problem. In this work, we characterize these signal eigenvalues and eigenvectors for a nonlinear version of the spiked covariance model, including the CK as a special case. Using this general result, we give a quantitative description of how spiked eigenstructure in the input data propagates through the hidden layers of a neural network with random weights. As a second application, we study a simple regime of representation learning where the weight matrix develops a rank-one signal component over training and characterize the alignment of the target function with the spike eigenvector of the CK on test data.more » « lessFree, publicly-accessible full text available June 30, 2025