skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2142554

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The spin point groups are finite groups whose elements act on both real space and spin space. Among these groups are the magnetic point groups in the case where the real and spin space operations are locked to one another. The magnetic point groups are central to magnetic crystallography for strong spin-orbit coupled systems and the spin point groups generalize these to the intermediate and weak spin-orbit coupled cases. The spin point groups were introduced in the 1960’s in the context of condensed matter physics and enumerated shortly thereafter. In this paper, we complete the theory ofcrystallographic spin point groups by presenting an account of these groups and their representation theory. Our main findings are that the so-called nontrivial spin point groups (numbering598 598 groups) have co-irreps corresponding exactly to the (co-)-irreps of regular or black and white groups and we tabulate this correspondence for each nontrivial group. However a total spin group, comprising the product of a nontrivial group and a spin-only group, has new co-irreps in cases where there is continuous rotational freedom. We provide explicit co-irrep tables for all these instances. We also discuss new forms of spin-only group extending the Litvin-Opechowski classes. To exhibit the usefulness of these groups to physically relevant problems we discuss a number of examples from electronic band structures of altermagnets to magnons. 
    more » « less
    Free, publicly-accessible full text available March 24, 2026