Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We prove two results on convex subsets of Euclidean spaces invariant under an orthogonal group action. First, we show that invariant spectrahedra admit an equivariant spectrahedral description, that is, can be described by an equivariant linear matrix inequality. Second, we show that the bijection induced by Kostant's Convexity Theorem between convex subsets invariant under a polar representation and convex subsets of a section invariant under the Weyl group preserves the classes of convex semialgebraic sets, spectrahedral shadows, and rigidly convex sets.more » « less
-
Abstract We find examples of cohomogeneity one metrics on$$S^4$$ and$$\mathbb {C}P^2$$ with positive sectional curvature that lose this property when evolved via Ricci flow. These metrics are arbitrarily small perturbations of Grove–Ziller metrics with flat planes that become instantly negatively curved under Ricci flow.more » « less
-
We determine linear inequalities on the eigenvalues of curvature operators that imply vanishing of the twisted A-hat genus on a closed Riemannian spin manifold, where the twisting bundle is any prescribed parallel bundle of tensors. These inequalities yield surgery-stable curvature conditions tailored to annihilate further rational cobordism invariants, such as the Witten genus, elliptic genus, signature, and even the rational cobordism class itself.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Following Gromov, a Riemannian manifold is called area-extremal if any modification that increases scalar curvature must decrease the area of some tangent 2-plane. We prove that large classes of compact 4-manifolds, with or without boundary, with nonnegative sectional curvature are area-extremal. We also show that all regions of positive sectional curvature on 4-manifolds are locally area-extremal. These results are obtained analyzing sections in the kernel of a twisted Dirac operator constructed from pairs of metrics, and using the Finsler–Thorpe trick for sectional curvature bounds in dimension 4.more » « less
An official website of the United States government
