Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Personalized recommender systems play a crucial role in modern society, especially in e-commerce, news, and ads areas. Correctly evaluating and comparing candidate recommendation models is as essential as constructing ones. The common offline evaluation strategy is holding out some user-interacted items from training data and evaluating the performance of recommendation models based on how many items they can retrieve. Specifically, for any hold-out item or so-called target item for a user, the recommendation models try to predict the probability that the user would interact with the item and rank it among overall items, which is calledglobal evaluation. Intuitively, a good recommendation model would assign high probabilities to such hold-out/target items. Based on the specific ranks, some metrics likeRecall@KandNDCG@Kcan be calculated to further quantify the quality of the recommender model. Instead of ranking the target items among all items, Koren first proposed to rank them among a smallsampled set of items, then quantified the performance of the models, which is calledsampling evaluation. Ever since then, there has been a large amount of work adopting sampling evaluation due to its efficiency and frugality. In recent work, Rendle and Krichene argued that the sampling evaluation is “inconsistent” with respect to a global evaluation in terms of offline top-Kmetrics. In this work, we first investigate the “inconsistent” phenomenon by taking a glance at the connections between sampling evaluation and global evaluation. We reveal the approximately linear relationship between sampling with respect to its global counterpart in terms of the top-KRecall metric. Second, we propose a new statistical perspective of the sampling evaluation—to estimate the global rank distribution of the entire population. After the estimated rank distribution is obtained, the approximation of the global metric can be further derived. Third, we extend the work of Krichene and Rendle, directly optimizing the error with ground truth, providing not only a comprehensive empirical study but also a rigorous theoretical understanding of the proposed metric estimators. To address the “blind spot” issue, where accurately estimating metrics for small top-Kvalues in sampling evaluation is challenging, we propose a novel adaptive sampling method that generalizes the expectation-maximization algorithm to this setting. Last but not least, we also study the user sampling evaluation effect. This series of works outlines a clear roadmap for sampling evaluation and establishes a foundational theoretical framework. Extensive empirical studies validate the reliability of the sampling methods presented.more » « less
-
Vector search has drawn a rapid increase of interest in the research community due to its application in novel AI applications. Maximizing its performance is essential for many tasks but remains preliminary understood. In this work, we investigate the root causes of the scalability bottleneck of using intra-query parallelism to speedup the state-of-the-art graph-based vector search systems on multi-core architectures. Our in-depth analysis reveals several scalability challenges from both system and algorithm perspectives. Based on the insights, we propose iQAN, a parallel search algorithm with a set of optimizations that boost convergence, avoid redundant computations, and mitigate synchronization overhead. Our evaluation results on a wide range of real-world datasets show that iQAN achieves up to 37.7× and 76.6× lower latency than state-of-the-art sequential baselines on datasets ranging from a million to a hundred million datasets. We also show that iQAN achieves outstanding scalability as the graph size or the accuracy target increases, allowing it to outperform the state-of-the-art baseline on two billion-scale datasets by up to 16.0× with up to 64 cores.more » « less
-
Since Rendle and Krichene argued that commonly used sampling-based evaluation metrics are “inconsistent” with respect to the global metrics (even in expectation), there have been a few studies on the sampling-based recommender system evaluation. Existing methods try either mapping the sampling-based metrics to their global counterparts or more generally, learning the empirical rank distribution to estimate the top-K metrics. However, despite existing efforts, there is still a lack of rigorous theoretical understanding of the proposed metric estimators, and the basic item sampling also suffers from the “blind spot” issue, i.e., estimation accuracy to recover the top-K metrics when K is small can still be rather substantial. In this paper, we provide an in-depth investigation into these problems and make two innovative contributions. First, we propose a new item-sampling estimator that explicitly optimizes the error with respect to the ground truth, and theoretically highlights its subtle difference against prior work. Second, we propose a new adaptive sampling method that aims to deal with the “blind spot” problem and also demonstrate the expectation-maximization (EM) algorithm can be generalized for such a setting. Our experimental results confirm our statistical analysis and the superiority of the proposed works. This study helps lay the theoretical foundation for adopting item sampling metrics for recommendation evaluation and provides strong evidence for making item sampling a powerful and reliable tool for recommendation evaluation.more » « less
An official website of the United States government
