Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhang, Huaiying (Ed.)Nuclear compartments form via biomolecular phase separation, mediated through multivalent properties of biomolecules concentrated within condensates. Certain compartments are associated with specific chromatin regions, including transcriptional initiation condensates, which are composed of transcription factors and transcriptional machinery, and form at acetylated regions including enhancer and promoter loci. While protein self-interactions, especially within low-complexity and intrinsically disordered regions, are known to mediate condensation, the role of substrate-binding interactions in regulating the formation and function of biomolecular condensates is underexplored. Here, utilizing live-cell experiments in parallel with coarse-grained simulations, we investigate how chromatin interaction of the transcriptional activator BRD4 modulates its condensate formation. We find that both kinetic and thermodynamic properties of BRD4 condensation are affected by chromatin binding: nucleation rate is sensitive to BRD4–chromatin interactions, providing an explanation for the selective formation of BRD4 condensates at acetylated chromatin regions, and thermodynamically, multivalent acetylated chromatin sites provide a platform for BRD4 clustering below the concentration required for off-chromatin condensation. This provides a molecular and physical explanation of the relationship between nuclear condensates and epigenetically modified chromatin that results in their mutual spatiotemporal regulation, suggesting that epigenetic modulation is an important mechanism by which the cell targets transcriptional condensates to specific chromatin loci.more » « less
-
Phase-separated biomolecular condensates containing proteins and RNAs can assemble into higher-order structures by forming thermodynamically stable interfaces between immiscible phases. Using a minimal model of a protein/RNA interaction network, we demonstrate how a “shared” protein species that partitions into both phases of a multiphase condensate can function as a tunable surfactant that modulates the interfacial properties. We use Monte Carlo simulations and free-energy calculations to identify conditions under which a low concentration of this shared species is sufficient to trigger a wetting transition. We also describe a numerical approach based on classical density functional theory to predict concentration profiles and surface tensions directly from the model protein/RNA interaction network. Finally, we show that the wetting phase diagrams that emerge from our calculations can be understood in terms of a simple model of selective adsorption to a fluctuating interface. Our work shows how a low-concentration protein species might function as a biological switch for regulating multiphase condensate morphologies. Published by the American Physical Society2024more » « less
-
Chemically driven fluids can demix to form condensed droplets that exhibit phase behaviors not observed at equilibrium. In particular, nonequilibrium interfacial properties can emerge when the chemical reactions are driven differentially between the interior and exterior of the phase-separated droplets. Here, we use a minimal model to study changes in the interfacial tension between coexisting phases away from equilibrium. Simulations of both droplet nucleation and interface roughness indicate that the nonequilibrium interfacial tension can either be increased or decreased relative to its equilibrium value, depending on whether the driven chemical reactions are accelerated or decelerated within the droplets. Finally, we show that these observations can be understood using a predictive theory based on an effective thermodynamic equilibrium.more » « less
-
We introduce a method for solving the “inverse” phase equilibria problem: How should the interactions among a collection of molecular species be designed in order to achieve a target phase diagram? Using techniques from convex optimization theory, we show how to solve this problem for phase diagrams containing a large number of components and many coexisting phases with prescribed compositions. We apply our approach to commonly used mean-field models of multicomponent fluids and then use molecular simulations to verify that the designed interactions result in the target phase diagrams. Our approach enables the rational design of “programmable” fluids, such as biopolymer and colloidal mixtures, with complex phase behavior.more » « less
An official website of the United States government
