skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2143704

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large language models offer new ways of empowering people to program robot applications-namely, code generation via prompting. However, the code generated by LLMs is susceptible to errors. This work reports a preliminary exploration that empirically characterizes common errors produced by LLMs in robot programming. We categorize these errors into two phases: interpretation and execution. In this work, we focus on errors in execution and observe that they are caused by LLMs being “forgetful” of key information provided in user prompts. Based on this observation, we propose prompt engineering tactics designed to reduce errors in execution. We then demonstrate the effectiveness of these tactics with three language models: ChatGPT, Bard, and LLaMA-2. Finally, we discuss lessons learned from using LLMs in robot programming and call for the benchmarking of LLM-powered end-user development of robot applications. 
    more » « less
  2. Adebisi, John (Ed.)
    Non-expert users can now program robots using various end-user robot programming methods, which have widened the use of robots and lowered barriers preventing robot use by laypeople. Kinesthetic teaching is a common form of end-user robot programming, allowing users to forgo writing code by physically guiding the robot to demonstrate behaviors. Although it can be more accessible than writing code, kinesthetic teaching is difficult in practice because of users’ unfamiliarity with kinematics or limitations of robots and programming interfaces. Developing good kinesthetic demonstrations requires physical and cognitive skills, such as the ability to plan effective grasps for different task objects and constraints, to overcome programming difficulties. How to help users learn these skills remains a largely unexplored question, with users conventionally learning through self-guided practice. Our study compares how self-guided practice compares with curriculum-based training in building users’ programming proficiency. While we found no significant differences between study participants who learned through practice compared to participants who learned through our curriculum, our study reveals insights into factors contributing to end-user robot programmers’ confidence and success during programming and how learning interventions may contribute to such factors. Our work paves the way for further research on how to best structure training interventions for end-user robot programmers. 
    more » « less