skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2143984

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract How should billions of species observations worldwide be shared and made reusable? Many biodiversity scientists assume the ideal solution is to standardize all datasets according to a single, universal classification and aggregate them into a centralized, global repository. This ideal has known practical and theoretical limitations, however, which justifies investigating alternatives. To support better community deliberation and normative evaluation, we develop a novel conceptual framework showing how different organizational models, regulative ideals and heuristic strategies are combined to form shared infrastructures supporting data reuse. The framework is anchored in a general definition of data pooling as an activity of making a taxonomically standardized body of information available for community reuse via digital infrastructure. We describe and illustrate unified and pluralistic ideals for biodiversity data pooling and show how communities may advance toward these ideals using different heuristic strategies. We present evidence for the strengths and limitations of the unification and pluralistic ideals based on systemic relationships of power, responsibility and benefit they establish among stakeholders, and we conclude the pluralistic ideal is better suited for biodiversity data. 
    more » « less
  2. Biodiversity science is in a pivotal period when diverse groups of actors – including researchers, businesses, national governments, and Indigenous Peoples – are negotiating wide-ranging norms for governing and managing biodiversity data in digital repositories. The management of these repositories, often called biodiversity data portals, can serve either to redress or to perpetuate the colonial history of biodiversity science and current inequities. Both researchers and Indigenous Peoples are implementing new strategies to influence whom biodiversity data portals recognise as salient participants in data management and use. Two notable efforts are the FAIR (Findable, Accessible, Interoperable, Reusable) and CARE (Collective benefit, Authority, Responsibility, Ethics) Data Principles. Actors use these principles to influence the governance of biodiversity data portals. ‘Fit-for-use’ data is a social status provided by groups of actors who approve whether the data meets specific purposes. Advocates for the FAIR and CARE Principles use them in a similar way to institutionalise the authority of different groups of actors. However, the FAIR Principles prioritise the ability of machine agents to understand the meanings of data, while the CARE Principles prioritise Indigenous Peoples and their data sovereignty. Together, FAIR and CARE illustrate a broader emerging strategy for institutionalising international norms for digital repositories about who they should recognise as having a formal role in determinations of the fitness-for-use of data. 
    more » « less
  3. The aim to sequence, catalog, and characterize the genomes of all of Earth’s eukaryotic biodiversity is the shared mission of many ongoing large-scale biodiversity genomics initiatives. Reference genomes of global flora and fauna have the potential to inform a broad range of major issues facing both biodiversity and humanity, such as the impact of climate change, the conservation of endangered species and ecosystems, public health crises, and the preservation and enhancement of ecosystem services. Biodiversity is dramatically declining: 28% of species being assessed by the IUCN are threatened with extinction, and recent reports suggest that a transformative change is needed to conserve and protect what remains. To provide a collective and global genomic response to the biodiversity crisis, many biodiversity genomics initiatives have come together, creating a network of networks under the Earth BioGenome Project. This network seeks to expedite the creation of an openly available, “public good” encyclopedia of high-quality eukaryotic reference genomes, in the hope that by advancing our basic understanding of nature, it can lead to the transformational scientific developments needed to conserve and protect global biodiversity. Key to completing this ambitious encyclopedia of reference genomes, is the ability to responsibly, ethically, legally, and equitably access and use samples from all of the eukaryotic species across the planet, including those that are under the custodianship of Indigenous Peoples and Local Communities. Here, the biodiversity genomics community is subject to the provisions codified in international, national, and local legislations and customary community norms, principles, and protocols. We propose a framework to support biodiversity genomic researchers, projects, and initiatives in building trustworthy and sustainable partnerships with communities, providing minimum recommendations on how to access, utilize, preserve, handle, share, analyze, and communicate samples, genomics data, and associated Traditional Knowledge obtained from, and in partnership with, Indigenous Peoples and Local Communities across the data-lifecycle. 
    more » « less