skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2144208

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fair and Efficient Allocation Algorithms Do Not Require Knowing Exact Item Values Food rescue organizations are tasked with allocating often-unpredictable donations to recipients who need it. For a large class of recipient valuation functions, this can be done in a fair and efficient manner as long as each recipient reports their value for each arriving donation. In practice, however, such valuations are rarely elicited. In “Dynamic Fair Division with Partial Information,” Benadè, Halpern, and Psomas ask whether simultaneous fairness and efficiency remain possible when the allocator receives limited information about recipient valuations, even as little as a single binary signal. For recipients with i.i.d. or correlated values, the paper provides an algorithm which is envy-free and 1-epsilon welfare-maximizing with high probability. Asymptotically tight results are also established for independent, nonidentical agents. This shows that fair and efficient online allocation algorithms do not critically rely on recipients being able to precisely report their utility functions. 
    more » « less
    Free, publicly-accessible full text available January 15, 2026
  2. In a game of persuasion with evidence, a sender has private information. By presenting evidence on the information, the sender wishes to persuade a receiver to take a single action (e.g., hire a job candidate, or convict a defendant). The sender’s utility depends solely on whether the receiver takes the action. The receiver’s utility depends on both the action and the sender’s private information. We study three natural variations. First, we consider the problem of computing an equilibrium of the game without commitment power. Second, we consider a persuasion variant, where the sender commits to a signaling scheme and the receiver, after seeing the evidence, takes the action or not. Third, we study a delegation variant, where the receiver first commits to taking the action if being presented certain evidence, and the sender presents evidence to maximize the probability the action is taken. We study these variants through the computational lens, and give hardness results, optimal approximation algorithms, and polynomial-time algorithms for special cases. Among our results is an approximation algorithm that rounds a semidefinite program that might be of independent interest, since, to the best of our knowledge, it is the first such approximation algorithm in algorithmic economics. 
    more » « less
    Free, publicly-accessible full text available December 31, 2025
  3. We study fair resource allocation with strategic agents. It is well-known that, across multiple fundamental problems in this domain, truthfulness and fairness are incompatible. For example, when allocating indivisible goods, no truthful and deterministic mechanism can guarantee envy-freeness up to one item (EF1), even for two agents with additive valuations. Or, in cake-cutting, no truthful and deterministic mechanism always outputs a proportional allocation, even for two agents with piecewise constant valuations. Our work stems from the observation that, in the context of fair division, truthfulness is used as a synonym for Dominant Strategy Incentive Compatibility (DSIC), requiring that an agent prefers reporting the truth, no matter what other agents report.In this paper, we instead focus on Bayesian Incentive Compatible (BIC) mechanisms, requiring that agents are better off reporting the truth in expectation over other agents' reports. We prove that, when agents know a bit less about each other, a lot more is possible: using BIC mechanisms we can achieve fairness notions that are unattainable by DSIC mechanisms in both the fundamental problems of allocation of indivisible goods and cake-cutting. We prove that this is the case even for an arbitrary number of agents, as long as the agents' priors about each others' types satisfy a neutrality condition. Notably, for the case of indivisible goods, we significantly strengthen the state-of-the-art negative result for efficient DSIC mechanisms, while also highlighting the limitations of BIC mechanisms, by showing that a very general class of welfare objectives is incompatible with Bayesian Incentive Compatibility. Combined, these results give a near-complete picture of the power and limitations of BIC and DSIC mechanisms for the problem of allocating indivisible goods. 
    more » « less