Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The duplication of genes has long been recognized as a substrate for evolutionary novelty and adaptation, but the factors that govern fixation of paralogs soon after duplication are only partially understood. Duplication often leads to an increase in gene dosage, or the amount of functional gene product. For genes with which an increased dosage is harmful (i.e., triplosensitive genes), a dosage balancing mechanism needs to be present immediately after duplication if it is to evade negative selection. Previous research in vertebrates has demonstrated a potential role for epigenetic factors in allowing triplosensitive genes to increase in copy number by regulating their expression post-duplication. Here we expand this research by investigating the epigenetic landscape of duplicate genes inD. discoideum, a basal lineage separated from humans by over a billion years. We found that activating histone modifications are quickly lost in duplicate genes before gradually increasing in enrichment as paralogs age. For the repressive modification H3K9me3, we found it was enriched in the youngest paralogs, and that this enrichment was likely mediated by heterochromatin spread from transposable elements. We similarly found enrichment of H3K9me3 in young human duplicates, and again found transposable elements as a potential mediator. Finally, we leveraged recent genome-wide estimates of triplosensitivity in human genes to directly examine the relationship between this kind of dosage sensitivity and enrichment for repressive histone modifications. Interestingly, while we found no significant link between enrichment for the repressive mark H3K9me3 and triplosensitivity in human paralogs, we did find a significant association between triplosensitivity and transposon proximity. Our findings suggest that transposons may contribute to the epigenetic regulatory environment associated with dosage balancing of young duplicates in both protists and humans.more » « lessFree, publicly-accessible full text available November 20, 2025
-
Abstract Duplicated genes provide the opportunity for evolutionary novelty and adaptive divergence. In many cases, having more gene copies increases gene expression, which might facilitate adaptation to stressful or novel environments. Conversely, overexpression or misexpression of duplicated genes can be detrimental and subject to negative selection. In this scenario, newly duplicate genes may evade purifying selection if they are epigenetically silenced, at least temporarily, leading them to persist in populations as copy number variations (CNVs). In animals and plants, younger gene duplicates tend to have higher levels of DNA methylation and lower levels of gene expression, suggesting epigenetic regulation could promote the retention of gene duplications via expression repression or silencing. Here, we test the hypothesis that DNA methylation variation coincides with young duplicate genes that are segregating as CNVs in six populations of the three‐spined stickleback that span a salinity gradient from 4 to 30 PSU. Using reduced‐representation bisulfite sequencing, we found DNA methylation and CNV differentiation outliers rarely overlapped. Whereas lineage‐specific genes and young duplicates were found to be highly methylated, just two gene CNVs showed a significant association between promoter methylation level and copy number, suggesting that DNA methylation might not interact with CNVs in our dataset. If most new duplications are regulated for dosage by epigenetic mechanisms, our results do not support a strong contribution from DNA methylation soon after duplication. Instead, our results are consistent with a preference to duplicate genes that are already highly methylated.more » « less
An official website of the United States government
