skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2144750

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Widespread and increasing use of road deicing salt is a major driver of increasing lake chloride concentrations, which can negatively impact aquatic organisms and ecosystems. We used a simple model to explore the controls on road salt concentrations and predict equilibrium concentrations in lakes across the contiguous United States. The model suggests that equilibrium salt concentration depends on three quantities: salt application rate, road density, and runoff (precipitation minus evapotranspiration). High application combined with high road density leads to high equilibrium salt concentrations regardless of runoff. Yet if application can be held at current rates or reduced, concentrations in many lakes situated in lightly to moderately urbanized watersheds should equilibrate at levels below currently recommended thresholds. In particular, our model predicts that, given 2010–2015 road salt application rates, equilibrium chloride concentrations in the contiguous United States will exceed the current regulatory chronic exposure threshold of 230 mg L−1in over 2000 lakes; will exceed 120 mg L−1in over 9000 lakes; and will be below 120 mg L−1in hundreds of thousands of lakes. Our analysis helps to contextualize current trends in road salt pollution of lakes, and suggests that stabilization of equilibrium chloride concentrations below thresholds designed to protect aquatic organisms should be an achievable goal. 
    more » « less
  2. Abstract Salt pollution is a threat to freshwater ecosystems. Anthropogenic salt inputs increase lake and stream salinity, and consequently change aquatic ecosystem structure and function. Elevated salt concentrations impact species directly not only through osmoregulatory stress, but also through community‐level feedbacks that change the flow of energy and materials through food webs. Here, we discuss the implications of road salt pollution on freshwater rivers and lakes and how “one size fits all” ecotoxicity thresholds may not adequately protect aquatic organisms. This article is categorized under:Science of Water > Water QualityWater and Life > Nature of Freshwater EcosystemsWater and Life > Stresses and Pressures on Ecosystems 
    more » « less
  3. This resource contains source code and select data products behind the following Master's Thesis: Platt, L. (2024). Basins modulate signatures of river salinization (Master's thesis). University of Wisconsin-Madison, Freshwater and Marine Sciences. The source code represents an R-based data processing and modeling pipeline written using the R package "targets". Some of the folders in the source code zipfile are intentionally left empty (except for a hidden file ".placeholder") in order for the code repository to be setup with the required folder structure. To execute this code, download the zip folder, unzip, and open the salt-modeling-data.Rproj file. Then, reference the instructions in the README.md file for installing packages, building the pipeline, and examining the results. Newer versions of this repository may be updated in GitHub at github.com/lindsayplatt/salt-modeling-data. In addition to the source code, this resource contains three data files containing intermediate products of the pipeline. The first two represent data prepared for the random forest modeling. Data download and processing were completed in pipeline phases 1 - 5, and the random forest modeling was completed in phase 6 (see source code).  site_attributes.csv which contains the USGS gage site numbers and their associated basin attributes site_classifications.csv which contains the classification of a site for both episodic signatures ("Episodic" or "Not episodic") and baseflow salinization signatures ("positive", "none", "negative", or NA). Note that an NA in the baseflow classification column means that the site did not meet minimum data requirements for calculating a trend and was not used in the random forest model for baseflow salinization. site_attribute_details.csv contains a table of each attribute shorthand used as column names in site_attributes.csv and their names, units, description, and data source. 
    more » « less
  4. Freshwater salinization from anthropogenic activities threatens water quality and habitat suitability for many lakes and rivers in North America. Recognizing that salinization is a stress on freshwater environments globally, research on watershed salt transport is necessary for informed management strategies. Prior to this research, there were few studies that examined salt export regimes along a river–lake continuum to investigate the drivers, temporal dynamics, and modulators of freshwater salinization. Here, we use high-frequency in situ monitoring to assess specific conductance–discharge (cQ) relationships, chloride concentrations and fluxes, and the role of lakes in downstream salt transport. The Upper Yahara River Watershed in southern Wisconsin, USA, is a mixed urban and agricultural watershed where the lakes' chloride concentrations have risen from < 5 mg L−1 in the 1940s to > 50–80 mg L−1 in 2021. Our results suggest cQ behavior depends on land use, with urban areas exhibiting more frequent mobilization events during stormflow and agricultural areas exhibiting predominantly dilution dynamics. In addition, chloride loading is driven by hydrology and watershed size whereas concentrations and yields are a function of anthropogenic drivers like urbanization. We demonstrate how an in-network lake attenuates downstream salinity, dampening the hydrologic, anthropogenic, and seasonal patterns observed in rivers upstream of the lake. Importantly, biogeochemical processes in lakes overlay a seasonal signal on salinity that must be considered when investigating temporal dynamics of anthropogenic salinization. This research contributes to understanding of temporal dynamics of salt export through watersheds and can be used to inform management strategies for habitat protection. 
    more » « less