skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2144912

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Prenatal brain development is particularly sensitive to chemicals that can disrupt synapse formation and cause neurodevelopmental disorders. In most cases, such chemicals increase cellular oxidative stress. For example, prenatal exposure to the anti-epileptic drug valproic acid (VPA), induces oxidative stress and synaptic alterations, promoting autism spectrum disorders (ASD) in humans and autism-like behaviors in rodents. Using VPA to model chemically induced ASD, we tested whether activation of cellular mechanisms that increase antioxidant gene expression would be sufficient to prevent VPA-induced synaptic alterations. As a master regulator of cellular defense pathways, the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) promotes expression of detoxification enzymes and antioxidant gene products. To increase NRF2 activity, we used the phytochemical and potent NRF2 activator, sulforaphane (SFN). In our models of human neurodevelopment, SFN activated NRF2, increasing expression of antioxidant genes and preventing oxidative stress. SFN also enhanced expression of genes associated with synapse formation. Consistent with these gene expression profiles, SFN protected developing neural networks from VPA-induced reductions in synapse formation. Furthermore, in mouse cortical neurons, SFN rescued VPA-induced reductions in neural activity. These results demonstrate the ability of SFN to protect developing neural networks during the vulnerable period of synapse formation, while also identifying molecular signatures of SFN-mediated neuroprotection that could be relevant for combatting other environmental toxicants. 
    more » « less
  2. Tuberous Sclerosis (TS) is a rare genetic disorder manifesting with multiple benign tumors impacting the function of vital organs. In TS patients, dominant negative mutations in TSC1 or TSC2 increase mTORC1 activity. Increased mTORC1 activity drives tumor formation, but also severely impacts central nervous system function, resulting in infantile seizures, intractable epilepsy, and TS-associated neuropsychiatric disorders, including autism, attention deficits, intellectual disability, and mood disorders. More recently, TS has also been linked with frontotemporal dementia. In addition to TS, accumulating evidence implicates increased mTORC1 activity in the pathology of other neurodevelopmental and neurodegenerative disorders. Thus, TS provides a unique disease model to address whether developmental neural circuit abnormalities promote age-related neurodegeneration, while also providing insight into the therapeutic potential of mTORC1 inhibitors for both developing and degenerating neural circuits. In the following review, we explore the ability of both mouse and human brain organoid models to capture TS pathology, elucidate disease mechanisms, and shed light on how neurodevelopmental alterations may later contribute to age-related neurodegeneration. 
    more » « less