skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2145766

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Linear mechanical systems with time-modulated parameters can harbor oscillations with amplitudes that grow or decay exponentially with time due to the phenomenon of parametric resonance. While the resonance properties of individual oscillators are well understood, those of systems of coupled oscillators remain challenging to characterize. Here, we determine the parametric resonance conditions for time-modulated mechanical systems by exploiting the internal symmetries arising from the real-valued and symplectic nature of classical mechanics. We also determine how these conditions are further constrained when the system exhibits external symmetries. In particular, we analyze systems with space-time symmetry where the system remains invariant after a combination of discrete translation in both space and time. For such systems, we identify a combined space-time translation operator that provides more information about the dynamics of the system than the Floquet operator does, and use it to derive conditions for one-way amplification of traveling waves. Our exact theoretical framework based on symmetries enables the design of exotic responses such as nonreciprocal transport and one-way amplification in dynamic mechanical metamaterials, and is generalizable to all physical systems that obey space-time symmetry. 
    more » « less