skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2145900

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 31, 2026
  2. In the present work, we develop a novel particle method for a general class of mean field control problems, with source and terminal constraints. Specific examples of the problems we consider include the dynamic formulation of thep-Wasserstein metric, optimal transport around an obstacle, and measure transport subject to acceleration controls. Unlike existing numerical approaches, our particle method is meshfree and does not require global knowledge of an underlying cost function or of the terminal constraint. A key feature of our approach is a novel way of enforcing the terminal constraint via a soft, nonlocal approximation, inspired by recent work on blob methods for diffusion equations.We prove convergence of our particle approximation to solutions of the continuum mean-field control problem in the sense of Γ-convergence. A byproduct of our result is an extension of existing discrete-to-continuum convergence results for mean field control problems to more general state and measure costs, as arise when modeling transport around obstacles, and more general constraint sets, including controllable linear time invariant systems. Finally, we conclude by implementing our method numerically and using it to compute solutions the example problems discussed above. We conduct a detailed numerical investigation of the convergence properties of our method, as well as its behavior in sampling applications and for approximation of optimal transport maps. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026