skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2146480

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Euplectella aspergillummarine sponge spicules are renowned for their remarkable strength and toughness. These spicules exhibit a unique concentric layering structure, which contributes to their exceptional mechanical resistance. In this study, finite element method simulations were used to comprehensively investigate the effect of nested cylindrical structures on the mechanical properties of spicules. This investigation leveraged scanning electron microscopy images to guide the computational modeling of the microstructure and the results were validated by three-point bending tests of 3D-printed spicule-inspired structures. The numerical analyses showed that the nested structure of spicules induces stress and strain jumps on the layer interfaces, reducing the load on critical zones of the fiber and increasing its toughness. It was found that this effect shows a tapering enhancement as the number of layers increases, which combines with a threshold related to the 3D-printing manufacturability to suggest a compromise for optimal performance. A comprehensive evaluation of the mechanical properties of these fibers can assist in developing a new generation of bioinspired structures with practical real-world applications. 
    more » « less