skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2147536

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Previous geophysical studies in the New England Appalachians identified a ∼15 km offset in crustal thickness near the surface boundary between Laurentia and the accreted terranes. Here, we investigate crustal structure using data from a denser array: New England Seismic Transects experiment, which deployed stations spaced ∼10 km apart across the Laurentia‐Moretown terrane suture in northwestern Massachusetts. We used receiver function (RF) analysis to detectPtoSVconverted waves and identified multiple interfaces beneath the transect. We also implemented a harmonic decomposition analysis to identify features at or near the Moho with dipping and/or anisotropic character. Beneath the Laurentian margin, the Ps converted phase from the Moho arrives almost 5.5 s after the initialPwave, whereas beneath the Appalachian terranes, the pulse arrives at 3.5 s, corresponding to ∼48 and ∼31 km depth, respectively. The character of the RF traces beneath stations in the middle of our array suggests a complex transitional zone with dipping and/or anisotropic boundaries extending at least ∼30 km. This extension is measured in our profiles and perpendicular to the suture. We propose one possible crustal geometry model that is consistent with our observations and results from previous studies. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  2. Abstract On 5 April 2024, 10:23 a.m. local time, a moment magnitude 4.8 earthquake struck Tewksbury Township, New Jersey, about 65 km west of New York City. Millions of people from Virginia to Maine and beyond felt the ground shaking, resulting in the largest number (>180,000) of U.S. Geological Survey (USGS) “Did You Feel It?” reports of any earthquake. A team deployed by the Geotechnical Extreme Events Reconnaissance Association and the National Institute of Standards and Technology documented structural and nonstructural damage, including substantial damage to a historic masonry building in Lebanon, New Jersey. The USGS National Earthquake Information Center reported a focal depth of about 5 km, consistent with a lack of signal in Interferometric Synthetic Aperture Radar data. The focal mechanism solution is strike slip with a substantial thrust component. Neither mechanism’s nodal plane is parallel to the primary northeast trend of geologic discontinuities and mapped faults in the region, including the Ramapo fault. However, many of the relocated aftershocks, for which locations were augmented by temporary seismic deployments, form a cluster that parallels the general northeast trend of the faults. The aftershocks lie near the Tewksbury fault, north of the Ramapo fault. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  3. Abstract Seismic tomography observations show a low‐velocity feature in the upper mantle beneath eastern North America known as the Northern Appalachian Anomaly (NAA). Proposed models for the formation of the NAA include a remnant high‐temperature feature resulting from the passage of the Great Meteor Hotspot, edge‐driven convection, and ongoing asthenospheric upwelling. We investigate the structure of the lithosphere above the central portion of the NAA using data from the New England Seismic Transects (NEST) experiment. Ps receiver functions reveal two consistent interfaces beneath the dense northern line of NEST: the Moho (the base of the crust) and a deeper negative velocity gradient (NVG) feature located at depths between 60 and 110 km. We consider several potential explanations for this NVG feature; based on comparisons with previous results, we propose that it likely corresponds to the lithosphere‐asthenosphere boundary. Our results indicate that the lithosphere beneath New England is nonuniform and has likely been thinned. 
    more » « less