Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider a decentralized wireless network with several source-destination pairs sharing a limited number of orthogonal frequency bands. Sources learn to adapt their transmissions (specifically, their band selection strategy) over time, in a decentralized manner, without sharing information with each other. Sources can only observe the outcome of their own transmissions (i.e., success or collision), having no prior knowledge of the network size or of the transmission strategy of other sources. The goal of each source is to maximize their own throughput while striving for network-wide fairness. We propose a novel fully decentralized Reinforcement Learning (RL)-based solution that achieves fairness without coordination. The proposed Fair Share RL (FSRL) solution combines: (i) state augmentation with a semi-adaptive time reference; (ii) an architecture that leverages risk control and time difference likelihood; and (iii) a fairnessdriven reward structure. We evaluate FSRL in several network settings. Simulation results suggest that, when we compare FSRL with a common baseline RL algorithm from the literature, FSRL can be up to 89.0% fairer (as measured by Jain’s fairness index) in stringent settings with several sources and a single frequency band, and 48.1% fairer on average.more » « lessFree, publicly-accessible full text available May 26, 2026
-
Urban environments pose significant challenges to pedestrian safety and mobility. This paper introduces a novel modular sensing framework for developing real-time, multimodal streetscape applications in smart cities. Prior urban sensing systems predominantly rely either on fixed data modalities or centralized data processing, resulting in limited flexibility, high latency, and superficial privacy protections. In contrast, our framework integrates diverse sensing modalities, including cameras, mobile IMU sensors, and wearables into a unified ecosystem leveraging edge-driven distributed analytics. The proposed modular architecture, supported by standardized APIs and message-driven communication, enables hyper-local sensing and scalable development of responsive pedestrian applications. A concrete application demonstrating multimodal pedestrian tracking is developed and evaluated. It is based on the cross-modal inference module, which fuses visual and mobile IMU sensor data to associate detected entities in the camera domain with their corresponding mobile device.We evaluate our framework’s performance in various urban sensing scenarios, demonstrating an online association accuracy of 75% with a latency of ≈39 milliseconds. Our results demonstrate significant potential for broader pedestrian safety and mobility scenarios in smart cities.more » « lessFree, publicly-accessible full text available May 6, 2026
-
—We consider a decentralized wireless network with several source-destination pairs sharing a limited number of orthogonal frequency bands. Sources learn to adapt their transmissions (specifically, their band selection strategy) over time, in a decentralized manner, without sharing information with each other. Sources can only observe the outcome of their own transmissions (i.e., success or collision), having no prior knowledge of the network size or of the transmission strategy of other sources. The goal of each source is to maximize their own throughput while striving for network-wide fairness. We propose a novel fully decentralized Reinforcement Learning (RL)-based solution that achieves fairness without coordination. The proposed Fair Share RL(FSRL)solution combines: (i) state augmentation with a semiadaptive time reference; (ii) an architecture that leverages risk control and time difference likelihood; and (iii) a fairness-driven reward structure. We evaluate FSRL in more than 50 network settings with different number of agents, different amounts of available spectrum, in the presence of jammers, and in an ad-hoc setting. Simulation results suggest that, when we compare FSRL with a common baseline RL algorithm from the literature, FSRL can be up to 89.0% fairer (as measured by Jain’s fairness index) in stringent settings with several sources and a single frequency band, and 48.1% fairer on average.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Backscatter power measurements are collected to characterize indoor radar clutter in monostatic sensing applications. A narrowband 28 GHz sounder used a quasimonostatic radar arrangement with an omnidirectional transmit antenna illuminating an indoor scene and a spinning horn receive antenna offset vertically (less than 1 m away) collecting backscattered power as a function of azimuth. Power variation in azimuth around the local average is found to be within 1 dB of a lognormal distribution with a standard deviation of 6.8 dB. Backscatter azimuth spectra are found to be highly variable with location, with cross-correlation coefficients on the order of 0.3 at separations as small as 0.1 m. These statistics are needed for system-level evaluation of RF sensing performance.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Backscatter power measurements are collected to characterize indoor radar clutter in monostatic sensing applications. A narrowband 28 GHz sounder used a quasi-monostatic radar arrangement with an omnidirectional transmit antenna illuminating an indoor scene and a spinning horn receive antenna offset vertically (less than 1 m away) collecting backscattered power as a function of azimuth. Power variation in azimuth around the local average is found to be within 1 dB of a lognormal distribution with a standard deviation of 6.8 dB. Backscatter azimuth spectra are found to be highly variable with location, with cross-correlation coefficients on the order of 0.3 at separations as small as 0.1 m. These statistics are needed for system-level evaluation of RF sensing performance.more » « lessFree, publicly-accessible full text available February 1, 2026
-
In order to enable the simultaneous transmission and reception of wireless signals on the same frequency, a fullduplex (FD) radio must be capable of suppressing the powerful self-interference (SI) signal emitted from the transmitter and picked up by the receiver. Critically, a major bottleneck in wideband FD deployments is the need for adaptive SI cancellation (SIC) that would allow the FD wireless system to achieve strong cancellation across different settings with distinct electromagnetic environments. In this work, we evaluate the performance of an adaptive wideband FD radio in three different locations and demonstrate that it achieves strong SIC in every location across different bandwidths.more » « lessFree, publicly-accessible full text available December 4, 2025
-
Graph signal processing (GSP) has emerged as a powerful tool for practical network applications, including power system monitoring. Recent research has focused on developing GSP-based methods for state estimation, attack detection, and topology identification using the representation of the power system voltages as smooth graph signals. Within this framework, efficient methods have been developed for detecting false data injection (FDI) attacks, which until now were perceived as nonsmooth with respect to the graph Laplacian matrix. Consequently, these methods may not be effective against smooth FDI attacks. In this paper, we propose a graph FDI (GFDI) attack that minimizes the Laplacian-based graph total variation (TV) under practical constraints. We present the GFDI attack as the solution for a non-convex constrained optimization problem. The solution to the GFDI attack problem is obtained through approximating it using ℓ1 relaxation. A series of quadratic programming problems that are classified as convex optimization problems are solved to obtain the final solution. We then propose a protection scheme that identifies the minimal set of measurements necessary to constrain the GFDI output to a high graph TV, thereby enabling its detection by existing GSP-based detectors. Our numerical simulations on the IEEE-57 and IEEE-118 bus test cases reveal the potential threat posed by well-designed GSP-based FDI attacks. Moreover, we demonstrate that integrating the proposed protection design with GSP-based detection can lead to significant hardware cost savings compared to previous designs of protection methods against FDI attacks.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Recent advances in Visual Language Models (VLMs) have significantly enhanced video analytics. VLMs capture complex visual and textual connections. While Convolutional Neural Networks (CNNs) excel in spatial pattern recognition, VLMs provide a global context, making them ideal for tasks like complex incidents and anomaly detection. However, VLMs are much more computationally intensive, posing challenges for large-scale and real-time applications. This paper introduces EdgeCloudAI, a scalable system integrating VLMs and CNNs through edge-cloud computing. Edge- CloudAI performs initial video processing (e.g., CNN) on edge devices and offloads deeper analysis (e.g., VLM) to the cloud, optimizing resource use and reducing latency. We have deployed EdgeCloudAI on the NSF COSMOS testbed in NYC. In this demo, we will demonstrate EdgeCloudAI’s performance in detecting user-defined incidents in real-time.more » « lessFree, publicly-accessible full text available November 18, 2025
-
As urban populations grow, cities are becoming more complex, driving the deployment of interconnected sensing systems to realize the vision of smart cities. These systems aim to improve safety, mobility, and quality of life through applications that integrate diverse sensors with real-time decision-making. Streetscape applications—focusing on challenges like pedestrian safety and adaptive traffic management— depend on managing distributed, heterogeneous sensor data, aligning information across time and space, and enabling real-time processing. These tasks are inherently complex and often difficult to scale. The Streetscape Application Services Stack (SASS) addresses these challenges with three core services: multimodal data synchronization, spatiotemporal data fusion, and distributed edge computing. By structuring these capabilities as clear, composable abstractions with clear semantics, SASS allows developers to scale streetscape applications efficiently while minimizing the complexity of multimodal integration. We evaluated SASS in two real-world testbed environments: a controlled parking lot and an urban intersection in a major U.S. city. These testbeds allowed us to test SASS under diverse conditions, demonstrating its practical applicability. The Multimodal Data Synchronization service reduced temporal misalignment errors by 88%, achieving synchronization accuracy within 50 milliseconds. Spatiotemporal Data Fusion service improved detection accuracy for pedestrians and vehicles by over 10%, leveraging multicamera integration. The Distributed Edge Computing service increased system throughput by more than an order of magnitude. Together, these results show how SASS provides the abstractions and performance needed to support real-time, scalable urban applications, bridging the gap between sensing infrastructure and actionable streetscape intelligence.more » « lessFree, publicly-accessible full text available November 1, 2025