skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2148271

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 16, 2026
  2. Free, publicly-accessible full text available December 8, 2025
  3. Free, publicly-accessible full text available December 4, 2025
  4. This paper presents Monolith, a high bitrate, low-power, metamaterials surface-based Orbital Angular Momentum (OAM) MIMO multiplexing design for rank deficient, free space wireless environments. Leveraging ambient signals as the source of power, Monolith backscatters these ambient signals by modulating them into several orthogonal beams, where each beam carries a unique OAM. We provide insights along the design aspects of a low-power and programmable metamaterials-based surface. Our results show that Monolith achieves an order of magnitude higher channel capacity than traditional spatial MIMO backscattering networks. 
    more » « less