skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2148403

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While lee-wave generation has been argued to be a major sink for the 1-TW wind work on the ocean’s circulation, microstructure measurements in the Antarctic Circumpolar Currents find dissipation rates as much as an order of magnitude weaker than linear lee-wave generation predictions in bottom-intensified currents. Wave action conservation suggests that a substantial fraction of lee-wave radiation can be reabsorbed into bottom-intensified flows. Numerical simulations are conducted here to investigate generation, reabsorption, and dissipation of internal lee waves in a bottom-intensified, laterally confined jet that resembles a localized abyssal current over bottom topography. For the case of monochromatic topography with |kU0| ≈ 0.9N, wherekis the along-stream topographic wavenumber, |U0| is the near-bottom flow speed, andNis the buoyancy frequency; Reynolds-decomposed energy conservation is consistent with linear wave action conservation predictions that only 14% of lee-wave generation is dissipated, with the bulk of lee-wave energy flux reabsorbed by the bottom-intensified flow. Thus, water column reabsorption needs to be taken into account as a possible mechanism for reducing the lee-wave dissipative sink for balanced circulation. 
    more » « less