skip to main content


Search for: All records

Award ID contains: 2148984

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Phytoliths preserved in soils and sediments can be used to provide unique insights into past vegetation dynamics in response to human and climate change. Phytoliths can reconstruct local vegetation in terrestrial soils where pollen grains typically decay, providing a range of markers (or lack thereof) that document past human activities. The ca. 6 million km2of Amazonian forests have relatively few baseline datasets documenting changes in phytolith representation across gradients of human disturbances. Here we show that phytolith assemblages vary on local scales across a gradient of (modern) human disturbance in tropical rainforests of Suriname. Detrended correspondence analysis showed that the phytolith assemblages found in managed landscapes (shifting cultivation and a garden), unmanaged forests, and abandoned reforesting sites were clearly distinguishable from intact forests and from each other. Our results highlight the sensitivity and potential of phytoliths to be used in reconstructing successional trajectories after site usage and abandonment. Percentages of specific phytolith morphotypes were also positively correlated with local palm abundances derived from UAV data, and with biomass estimated from MODIS satellite imagery. This baseline dataset provides an index of likely changes that can be observed at other sites that indicate past human activities and long-term forest recovery in Amazonia.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Abstract

    People have modified landscapes throughout the Holocene (the lastc. 11,700 years) by modifying soils, burning forests, cultivating and domesticating plants, and directly and indirectly enriched and depleted plant abundances. These activities also took place in Amazonia, which is the largest contiguous piece of rainforest in the world, and for many decades was considered to have very little human impact until the modern era.

    The compositional shift caused by past human disturbances can alter forest traits, creating ecological legacies that may persist through time. As the lifespan of most Amazonian tree species is more than 200 years, forests that were modified over the last centuries to millennia are likely still in a mid‐successional state.

    Ecological legacies resulting from past human activity may also affect modern forest resilience to ongoing anthropogenic and climatic changes.

    Current estimates of resilience assume that forests are in equilibrium, and long‐term successional trajectories are not considered.

    We suggest that disturbance histories, generated through palaeoecological and archaeological surveys, should be paired with field‐based and remotely sensed estimates of forest resilience to recent drought events, to determine whether past human activities affect modern forest resilience. We have outlined how this can be accomplished in future research.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. With mountain studies we use integrative approaches for geoliteracy about productive socioecological landscapes, and motivate further transdisciplinary research in montology. We conceived this white paper as a confluence of individual expertise and collective reasoning towards forming syner- gistic research clusters dealing with convergent mountain science, to advance montology to a new level, whereby innovative thinking about sustainability science and regenerative development incorporates alternative propositions for maintenance, improvement, or regeneration of living conditions of moun- tainscapes. We seek to use this contemporary framing of sustainability and ecological restoration as the impetus to better understand nature-culture relations, framed on lived-in mountains that operate in four dimensions (length, width, depth, and time) oriented at maximizing the cross-cutting of themes around mountains as productive socioecological systems, in a new academic institutionalized convergent unit. We conclude with a call for consilient, sustainable, regenerative development in the world’s mountains. 
    more » « less
  4. Hamed, Mohammed Magdy (Ed.)
    The Pambamarca fortress complex in northern Ecuador is a cultural and built heritage with 18 prehispanic fortresses known as Pucaras . They are mostly located on the ridge of the Pambamarca volcano, which is severely affected by erosion. In this research, we implemented a multiscale methodology to identify sheet, rill and gully erosion in the context of climate change for the prehistoric sites. In a first phase, we coupled the Revised Universal Soil Loss Equation (RUSLE) and four CMIP6 climate models to evaluate and prioritize which Pucaras are prone to sheet and rill erosion, after comparing historical and future climate scenarios. Then, we conducted field visits to collect geophotos and soil samples for validation purposes, as well as drone flight campaigns to derive high resolution digital elevation models and identify gully erosion with the stream power index. Our erosion maps achieved an overall accuracy of 0.75 when compared with geophotos and correlated positively with soil samples sand fraction. The Pucaras evaluated with the historical climate scenario obtained erosion rates ranging between 0 and 20 ton*ha -1 *yr -1 . These rates also varied from -15.7% to 39.1% for four future climate change models that reported extreme conditions. In addition, after identifying and overflying six Pucaras that showed the highest erosion rates in the future climate models, we mapped their gully-prone areas that represented between 0.9% and 3.2% of their analyzed areas. The proposed methodology allowed us to observe how the design of the Pucaras and their concentric terraces have managed to reduce gully erosion, but also to notice the pressures they suffer due to their susceptibility to erosion, anthropic pressures and climate change. To address this, we suggest management strategies to guide the protection of this cultural and built heritage landscapes. 
    more » « less