skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2149956

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Estimating the transmission fitness of SARS‐CoV‐2 variants and understanding their evolutionary fitness trends are important for epidemiological forecasting. Existing methods are often constrained by their parametric natures and do not satisfactorily align with the observations during COVID‐19. Here, we introduce a sliding‐window data‐driven pairwise comparison method, the differential population growth rate (DPGR) that uses viral strains as internal controls to mitigate sampling biases. DPGR is applicable in time windows in which the logarithmic ratio of two variant subpopulations is approximately linear. We apply DPGR to genomic surveillance data and focus on variants of concern (VOCs) in multiple countries and regions. We found that the log‐linear assumption of DPGR can be reliably found within appropriate time windows in many areas. We show that DPGR estimates of VOCs align well with regional empirical observations in different countries. We show that DPGR estimates agree with another method for estimating pathogenic transmission. Furthermore, DPGR allowed us to construct viral relative fitness landscapes that capture the shifting trends of SARS‐CoV‐2 evolution, reflecting the relative changes of transmission traits for key genotypic changes represented by major variants. The straightforward log‐linear regression approach of DPGR may also facilitate its easy adoption. This study shows that DPGR is a promising new tool in our repertoire for addressing future pandemics. 
    more » « less
    Free, publicly-accessible full text available April 21, 2026
  2. Nagib C. Callaos (Ed.)
    Tandem mass spectrometry (MS/MS) is a widely used technology for identifying metabolites. De novo metabolite identification is an identification strategy that does not refer to any spectral or metabolite database. However, this strategy is time-consuming and cannot meet the need for high-throughput metabolite identification. Böcker et al. converted the de novo identification problem into the maximum colorful subtree (MCS) problem. Unfortunately, the MCS problem is NPhard, which indicates there are no existing efficient exact algorithms. To address this issue, we propose to apply quantum computing to accelerate metabolite identification. Quantum computing performs computations on quantum computers. The recent progress in this area has brought the hope of making some computationally intractable areas trackable, although there are still no general approaches to converting regular computer algorithms into quantum algorithms. Specifically, there is no efficient quantum algorithm for the MCS problem. The MCS problem can be considered as the combination of many maximum spanning tree problems that can be converted into minimum spanning tree problems. This work applies a quantum algorithm designed for the minimum spanning problem to speed up de novo metabolite identification. The possible strategy for further improving the performance is also briefly discussed. 
    more » « less