skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2151809

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Magnetic high entropy alloys (HEAs) consisting of 3dtransition metals offer an exciting platform to explore novel magnetic phases as they often house competing exchange interactions in combination with random site disorders. In this work, a sensitive and tunable magnetic order is demonstrated in sputtered single‐layer FeCoNiMnAlxfilms, as a function of non‐magnetic Al addition, along with an unexpected exchange bias effect. Thin films of 50 nm FeCoNiMn exhibit a face‐centered‐cubic (fcc) phase, reentrant spin glass (SG) transition near 100 K, and a large exchange bias of over 500 Oe after field‐cooling to 5 K. The exchange bias is increased to 930 Oe through a small addition of 5 at.% Al. Further Al addition to 12 at.% results in a body‐centered‐cubic (bcc) phase, coinciding with a large increase in the saturation magnetization, decrease of exchange bias to 50 Oe, and suppression of SG behavior. The change in magnetic order across the Al‐induced structural transformation is mediated by the switching of Mn ground state from AF to FM, which is supported by first‐principles calculations and experimentally confirmed via X‐ray magnetic circular dichroism. These results open up new HEA strategies for explorations of novel magnetic phases. 
    more » « less
    Free, publicly-accessible full text available April 27, 2026
  2. Abstract The vast high entropy alloy (HEA) composition space is promising for discovery of new material phases with unique properties. This study explores the potential to achieve rare‐earth‐free high magnetic anisotropy materials in single‐phase HEA thin films. Thin films of FeCoNiMnCu sputtered on thermally oxidized Si/SiO2substrates at room temperature are magnetically soft, with a coercivity on the order of 10 Oe. After post‐deposition rapid thermal annealing (RTA), the films exhibit a single face‐centered‐cubic phase, with an almost 40‐fold increase in coercivity. Inclusion of 50 at.% Pt in the film leads to ordering of a singleL10high entropy intermetallic phase after RTA, along with high magnetic anisotropy and 3 orders of magnitude coercivity increase. These results demonstrate a promising HEA approach to achieve high magnetic anisotropy materials using RTA. 
    more » « less
  3. Abstract The increasing energy demand in information technologies requires novel low‐power procedures to store and process data. Magnetic materials, central to these technologies, are usually controlled through magnetic fields or spin‐polarized currents that are prone to the Joule heating effect. Magneto‐ionics is a unique energy‐efficient strategy to control magnetism that can induce large non‐volatile modulation of magnetization, coercivity and other properties through voltage‐driven ionic motion. Recent studies have shown promising magneto‐ionic effects using nitrogen ions. However, either liquid electrolytes or prior annealing procedures are necessary to induce the desired N‐ion motion. In this work, magneto‐ionic effects are voltage‐triggered at room temperature in solid state systems of CoxMn1‐xN films, without the need of thermal annealing. Upon gating, a rearrangement of nitrogen ions in the layers is observed, leading to changes in the co‐existing ferromagnetic and antiferromagnetic phases, which result in substantial increase of magnetization at room temperature and modulation of the exchange bias effect at low temperatures. A detailed correlation between the structural and magnetic evolution of the system upon voltage actuation is provided. The obtained results offer promising new avenues for the utilization of nitride compounds in energy‐efficient spintronic and other memory devices. 
    more » « less
  4. Abstract Quantum critical points separating weak ferromagnetic and paramagnetic phases trigger many novel phenomena. Dynamical spin fluctuations not only suppress the long‐range order, but can also lead to unusual transport and even superconductivity. Combining quantum criticality with topological electronic properties presents a rare and unique opportunity. Here, by means of ab initio calculations and magnetic, thermal, and transport measurements, it is shown that the orthorhombic CoTe2is close to ferromagnetism, which appears suppressed by spin fluctuations. Calculations and transport measurements reveal nodal Dirac lines, making it a rare combination of proximity to quantum criticality and Dirac topology. 
    more » « less