Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The solution rheology of a fully synthetic, monodisperse mucin that mimics the glycosylated domains of natural mucins, poly(β‐Gal‐Thr)22, is studied to systematically explore relationships between polymer structure, solution conditions, and rheological properties. Using standard cone‐plate rheometry, shear thinning is observed over a range of concentrations, with an apparent yield stress—typical for gels—evident at the highest concentrations. This is surprising given the dilute, weakly interacting nature of the solutions and the lack of observable structure in cryogenic electron microscopy and particle tracking microrheology. However, interfacial rheometry demonstrates that the gel‐like behavior is attributable to a thin structured layer at the air–water interface, without any bulk gelation. This is attributed to an interfacial layer formed by inter‐mucin H‐bonds that yields when sheared. A computational model using kinetic Monte Carlo (kMC) simulations qualitatively reproduces the yield stress response of such a network through an intermolecular bonding potential. An analytical model of stochastic bond formation and breaking, validated by the kMC simulations, demonstrates that having multiple bonding sites per mucin with a force‐dependent debonding rate aligns with experiments, consistent with intermolecular interactions for other mucin proteins. This suggests that in mucin solutions, gelation may begin at the air–water interface, and emphasizes the need for multitechnique validation when exploring structural cues of mucus gelation through rheometry.more » « less
-
Abstract The challenge of fabricating transparent and conductive (T/C) films and patterns for applications in flexible electronics, touch screens, solar cells, and smart windows remains largely unsolved. Traditional fabrication techniques are complex, costly, time‐consuming, and struggle to achieve the necessary precision and accuracy over electronic and optical properties. Here, hypersurface photolithography (HP), which integrates microfluidics, a digital micromirror device, and photochemical surface‐initiated polymerizations is used to create polymer brush patterns. The high‐throughput optimization enabled by HP provides conditions to fabricate patterns composed of cross‐linked polymer brushes containing Au‐binding 2‐vinylpyrrolidine (2VP) groups with precise control over the height and the composition at each pixel. Au nanoparticles (AuNPs) are incorporated into the polymer brush patterns through in situ reduction of Au ions, resulting in T/C composite AuNP/polymer brush patterns. The sheet resistance at 100 mA of a 2VP‐AuNP‐functionalized patterns on a glass substrate is 0.42 Ω sq−1with 86% transmittance of visible light. Additional patterns demonstrate multiplexing by copatterning rhodamine B functionalized fluorescent polymer brushes and AuNP/polymer brush conductive domains. This work solves the challenge of creating T/C films by forming metal‐polymer composites from polymer brush patterns, offering a scalable solution for electronic and optical device development and fabrication.more » « less
-
Accumulated dust on solar cover glass reduces transmittance, leading to decreased energy efficiency of photovoltaic (PV) modules. Hydrophobic coatings on solar cover glass have been shown to provide anti-soiling properties when exposed to a condensing environment (e.g. dew). The addition of hydrophilic features along the top edge of the hydrophobic coated glass enhances condensation rates and can be used to achieve self-cleaning of the surfaces. However, to date, relatively long times have been required to clean the surfaces. In this study, we developed a new design for hydrophilic features that reduce the time required to clean the surface in laboratory tests as measured by laser scanning microscopy, optical photographs and UV–vis spectroscopy. The dagger-shaped features improve self-cleaning performance by a combination of three factors: a silica nanoparticle (NP) hydrophilic coating which enhances condensation rate due to a low water contact angle (WCA) and nano-scale porosity; the stepwise transition from the low WCA silica NP region to the high WCA silanized hydrophobic region via a bare glass transition zone; and the pointed shape of the hydrophobic dagger features which further minimizes the barrier for transport of droplets from the condensing region to the high-mobility, hydrophobic, region of the surface. The hydrophilic silica nanoparticle-coated dagger features not only improve the self-cleaning efficiency of the hydrophobic surfaces but also increase the overall amount of water harvested. Such coating designs provide an effective approach to reducing maintenance costs as well as increasing the overall energy output of PV panels.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Using methods of DFT, we investigated the effect of electron withdrawing and electron donating groups on the relative stability of tentative glycosyl donor reaction intermediates. The calculation shows that by changing the stereoelectronic properties of the protecting group, we can influence the stability of the dioxolenium type of intermediates by up to 10 kcal mol−1, and that by increasing nucleophillicity of the 4-O-Bz group, the dioxolenium intermediate becomes more stable than a triflate–donor pair. We exploited this mechanism to design galactosyl donors with custom protecting groups on O2 and O4, and investigated the outcome of the reaction with cyclohexanol. The reaction showed no change in the product distribution, which suggests that the neighboring group participation takes precedence over remote group participation due to kinetic barriers.more » « less
-
Thiol-selective native grafting from polymerization for the generation of protein–polymer conjugatesTIRP enables directgrafting-frompolymerization of proteins and enzymes under physiological conditions, maintaining their structure and function. By using cysteine thiols as initiators, polymers are site-selectively grafted from unmodified proteins.more » « less
-
The prospect of creating ferroelectric or high permittivity nanomaterials provides motivation for investigating complex transition metal oxides of the form Ba(Ti, MV)O3, where M = Nb or Ta. Solid state processing typically produces mixtures of crystalline phases, rarely beyond minimally doped Nb/Ta. Using a modified sol-gel method, we prepared single phase nanocrystals of Ba(Ti, M)O3. Compositional and elemental analysis puts the empirical formulas close to BaTi0.5Nb0.5O3−δ and BaTi0.5Ta0.5O3−δ. For both materials, a reversible temperature dependent phase transition (non-centrosymmetric to symmetric) is observed in the Raman spectrum in the region 533–583 K (260–310 °C); for Ba(Ti, Nb)O3, the onset is at 543 K (270 °C); and for Ba(Ti, Ta)O3, the onset is at 533 K (260 °C), which are comparable with 390–393 K (117–120 °C) for bulk BaTiO3. The crystal structure was resolved by examination of the powder x-ray diffraction and atomic pair distribution function (PDF) analysis of synchrotron total scattering data. It was postulated whether the structure adopted at the nanoscale was single or double perovskite. Double perovskites (A2B′B″O6) are characterized by the type and extent of cation ordering, which gives rise to higher symmetry crystal structures. PDF analysis was used to examine all likely candidate structures and to look for evidence of higher symmetry. The feasible phase space that evolves includes the ordered double perovskite structure Ba2(Ti, MV)O6 (M = Nb, Ta) Fm-3m, a disordered cubic structure, as a suitable high temperature analog, Ba(Ti, MV)O3Pm-3m, and an orthorhombic Ba(Ti, MV)O3Amm2, a room temperature structure that presents an unusually high level of lattice displacement, possibly due to octahedral tilting, and indication of a highly polarized crystal.more » « less
An official website of the United States government
