skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2152088

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper we explore noninvertible symmetries in general (not necessarily rational) SCFTs and their topological B-twists for Calabi-Yau manifolds. We begin with a detailed overview of defects in the topological B model. For trivial reasons, all defects in the topological B model are topological operators, and define (often noninvertible) symmetries of that topological field theory, but only a subset remain topological in the physical (i.e., untwisted) theory. For a generic target space Calabi-Yau X, we discuss geometric realizations of those defects, as simultaneously A- and B-twistable complex Lagrangian and complex coisotropic branes on X ×X, and discuss their fusion products. To be clear, the possible noninvertible symmetries in the B model are more general than can be described with fusion categories. That said, we do describe realizations of some Tambara-Yamagami categories in the B model for an elliptic curve target, and also argue that elliptic curves can not admit Fibonacci or Haagerup structures. We also discuss how decomposition is realized in this language. 
    more » « less
    Free, publicly-accessible full text available October 15, 2026