Thwaites Glacier (TG) plays an important role in future sea-level rise (SLR) contribution from the West Antarctic Ice Sheet. Recent observations show that TG is losing mass, and its grounding zone is retreating. Previous modeling has produced a wide range of results concerning whether, when, and how rapidly further retreat will occur under continued warming. These differences arise at least in part from ill-constrained processes, including friction from the bed, and future atmosphere and ocean forcing affecting ice-shelf and grounding-zone buttressing. Here, we apply the Ice Sheet and Sea-level System Model (ISSM) with a range of specifications of basal sliding behavior in response to varying ocean forcing. We find that basin-wide bed character strongly affects TG's response to sub-shelf melt by modulating how changes in driving stress are balanced by the bed as the glacier responds to external forcing. Resulting differences in dynamic thinning patterns alter modeled grounding-line retreat across Thwaites' catchment, affecting both modeled rates and magnitudes of SLR contribution from this critical sector of the ice sheet. Bed character introduces large uncertainties in projections of TG under equal external forcing, pointing to this as a crucial constraint needed in predictive models of West Antarctica.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Numerical ice sheet models use sliding laws to connect basal shear stress and ice velocity to simulate ice sliding. A sliding‐law parameter
β 2is used to control Weertman's sliding law in numerical ice sheet models. Basal reflectivity derived from ice‐penetrating radar also provides information about frozen or thawed conditions underneath glaciers. To assess whether basal reflectivity can be used to constrainβ 2, we carry out statistical experiments between two recently published datasets:β 2inferred from three numerical ice sheet models (ISSM, Úa and STREAMICE) and airborne radar‐derived relative basal reflectivity from the AGASEA‐BBAS mission over Thwaites Glacier (TG). Our results show no robust correlation between theβ 2–relative reflectivity pair. Pearson's correlation coefficient, a test of linearity, ranges from −0.26 to −0.38. Spearman's correlation coefficient, which does not require a linear assumption, is also modest (∼−0.35). We conclude thatβ 2and relative basal reflectivity underneath TG do not infer similar basal conditions. -
Abstract Thwaites Ice Shelf (TWIS), the floating extension of Thwaites Glacier, West Antarctica, is changing rapidly and may completely disintegrate in the near future. Any buttressing that the ice shelf provides to the upstream grounded Thwaites glacier will then be lost. Previously, it has been argued that this could lead to onset of dynamical instability and the rapid demise of the entire glacier. Here we provide the first systematic quantitative assessment of how strongly the upstream ice is buttressed by TWIS and how its collapse affects future projections. By modeling the stresses acting along the current grounding line, we show that they deviate insignificantly from the stresses after ice shelf collapse. Using three ice‐flow models, we furthermore model the transient evolution of Thwaites Glacier and find that a complete disintegration of the ice shelf will not substantially impact future mass loss over the next 50 years.
-
Abstract Thwaites and Pine Island Glaciers as well as other ice streams in West Antarctica have been changing dramatically over the past decades. Although changes in ocean conditions are likely the primary driver of these changes, it remains unclear
where other processes could cause more mass loss. By employing Automatic Differentiation and two independent ice‐sheet models, we construct maps of the sensitivity of the volume above floatation to changes in ocean‐induced melt rates, ice rigidity, basal friction, and surface mass balance. We find that changes in basal melt close to the grounding lines and along shear margins have a larger impact on the glaciers' final volume. The glaciers are sensitive to changes in basal friction on regions close to the grounding lines, while changes in ice rigidity has a larger impact along the shear margins of Pine Island. The sensitivity to surface mass balance is uniform over grounded ice. -
Abstract Using three independent ice‐flow models and several satellite‐based datasets, we assess the importance of correctly capturing ice‐shelf breakup, shelf thinning, and reduction in basal traction from ungrounding in reproducing observed speed‐up and thinning of Thwaites Glacier between 1995 and 2015. We run several transient numerical simulations applying these three perturbations individually. Our results show that ocean‐induced ice‐shelf thinning generates most of the observed grounding line retreat, inland speed‐up, and mass loss, in agreement with previous work. We improve the agreement with observed inland speed‐up and thinning by prescribing changes in ice‐shelf geometry and a reduction in basal traction over areas that became ungrounded since 1995, suggesting that shelf breakups and thinning‐induced reduction in basal traction play a critical role on Thwaites's dynamics, as pointed out by previous studies. These findings suggest that modeling Thwaites's future requires reliable ocean‐induced melt estimates in models that respond accurately to downstream perturbations.
-
Abstract. Numerical simulations of ice sheets rely on the momentum balance to determine how ice velocities change as the geometry of the system evolves. Ice is generally assumed to follow a Stokes flow with a nonlinear viscosity. Several approximations have been proposed in order to lower the computational cost of a full-Stokes stress balance. A popular option is the Blatter–Pattyn or higher-order model (HO), which consists of a three-dimensional set of equations that solves the horizontal velocities only. However, it still remains computationally expensive for long transient simulations. Here we present a depth-integrated formulation of the HO model, which can be solved on a two-dimensional mesh in the horizontal plane. We employ a specific polynomial function to describe the vertical variation in the velocity, which allows us to integrate the vertical dimension using a semi-analytic integration. We assess the performance of this MOno-Layer Higher-Order (MOLHO) model to compute ice velocities and simulate grounding line dynamics on standard benchmarks (ISMIP-HOM and MISMIP3D). We compare MOLHO results to the ones obtained with the original three-dimensional HO model. We also compare the time performance of both models in time-dependent runs. Our results show that the ice velocities and grounding line positions obtained with MOLHO are in very good agreement with the ones from HO. In terms of computing time, MOLHO requires less than 10 % of the computational time of a typical HO model, for the same simulations. These results suggest that the MOno-Layer Higher-Order formulation provides improved computational time performance and a comparable accuracy compared to the HO formulation, which opens the door to higher-order paleo simulations.more » « less
-
Abstract. Time-dependent simulations of ice sheets require two equations to be solved:the mass transport equation, derived from the conservation of mass, and thestress balance equation, derived from the conservation of momentum. The masstransport equation controls the advection of ice from the interior of the icesheet towards its periphery, thereby changing its geometry. Because it isbased on an advection equation, a stabilization scheme needs to beemployed when solved using the finite-element method. Several stabilizationschemes exist in the finite-element method framework, but their respectiveaccuracy and robustness have not yet been systematically assessed forglaciological applications. Here, we compare classical schemes used in thecontext of the finite-element method: (i) artificial diffusion, (ii)streamline upwinding, (iii) streamline upwind Petrov–Galerkin, (iv)discontinuous Galerkin, and (v) flux-corrected transport. We also look at thestress balance equation, which is responsible for computing the ice velocitythat “advects” the ice downstream. To improve the velocity computationaccuracy, the ice-sheet modeling community employs several sub-elementparameterizations of physical processes at the grounding line, the point wherethe grounded ice starts to float onto the ocean. Here, we introduce a newsub-element parameterization for the driving stress, the force that drives theice-sheet flow. We analyze the response of each stabilization scheme byrunning transient simulations forced by ice-shelf basal melt. The simulationsare based on an idealized ice-sheet geometry for which there is no influenceof bedrock topography. We also perform transient simulations of the AmundsenSea Embayment, West Antarctica, where real bedrock and surface elevations areemployed. In both idealized and real ice-sheet experiments, stabilizationschemes based on artificial diffusion lead systematically to a bias towardsmore mass loss in comparison to the other schemes and therefore should beavoided or employed with a sufficiently high mesh resolution in the vicinityof the grounding line. We also run diagnostic simulations to assess theaccuracy of the driving stress parameterization, which, in combination with anadequate parameterization for basal stress, provides improved numericalconvergence in ice speed computations and more accurate results.more » « less
-
Abstract. Among the most important challenges faced by ice flow models is how to represent basal and rheological conditions, which are challenging to obtain from direct observations. A common practice is to use numerical inversions to calculate estimates for the unknown properties, but there are many possible methods and not one standardised approach. As such, every ice flow model has a unique initialisation procedure. Here we compare the outputs of inversions from three different ice flow models, each employing a variant of adjoint-based optimisation to calculate basal sliding coefficients and flow rate factors using the same observed surface velocities and ice thickness distribution. The region we focus on is the Amundsen Sea Embayment in West Antarctica, the subject of much investigation due to rapid changes in the area over recent decades. We find that our inversions produce similar distributions of basal sliding across all models, despite using different techniques, implying that the methods used are highly robust and represent the physical equations without much influence by individual model behaviours. Transferring the products of inversions between models results in time-dependent simulations displaying variability on the order of or lower than existing model intercomparisons. Focusing on contributions to sea level, the highest variability we find in simulations run in the same model with different inversion products is 32 %, over a 40-year period, a difference of 3.67 mm. There is potential for this to be improved with further standardisation of modelling processes, and the lowest variability within a single model is 13 %, or 1.82 mm over 40 years. While the successful transfer of inversion outputs from one model to another requires some extra effort and technical knowledge of the particular models involved, it is certainly possible and could indeed be useful for future intercomparison projects.more » « less