Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Far-infrared Outgoing Radiation Understanding and Monitoring (FORUM) was selected in 2019 as the ninth Earth Explorer mission by the European Space Agency. Its primary objective is to collect interferometric measurements in the far-infrared (FIR) spectral range, which accounts for 50% of Earth’s outgoing longwave radiation emitted into space, and will be observed from space for the first time. Accurate measurements of the FIR at the top of the atmosphere are crucial for improving climate models. Current instruments are insufficient, necessitating the development of advanced computational techniques. FORUM will provide unprecedented insights into key atmospheric parameters, such as surface emissivity, water vapor, and ice cloud properties, through the use of a Fourier transform spectrometer. To ensure the quality of the mission’s data, an end-to-end simulator was developed to simulate the measurement process and evaluate the effects of instrument characteristics and environmental factors. The core challenge of the mission is solving the retrieval problem, which involves estimating atmospheric properties from the radiance spectra observed by the satellite. This problem is ill-posed and regularization techniques are necessary to stabilize the solution. In this work, we present a data-driven approach to approximate the inverse mapping in the retrieval problem, aiming to achieve a solution that is both computationally efficient and accurate. In the first phase, we generate an initial approximation of the inverse mapping using only simulated FORUM data. In the second phase, we improve this approximation by introducing climatological data asa prioriinformation and using a neural network to estimate the optimal regularization parameters during the retrieval process. While our approach does not match the precision of full-physics retrieval methods, its key advantage is the ability to deliver results almost instantaneously, making it highly suitable for real-time applications. Furthermore, the proposed method can provide more accuratea prioriestimates for full-physics methods, thereby improving the overall accuracy of the retrieved atmospheric profiles.more » « less
-
Abstract Electroencephalograms (EEG) are invaluable for treating neurological disorders, however, mapping EEG electrode readings to brain activity requires solving a challenging inverse problem. For time series data, the use of regularization quickly becomes intractable for many solvers, and, despite the reconstruction advantages of regularization, -based approaches such as standardized low-resolution brain electromagnetic tomographysLORETAare used in practice. In this work, we formulate EEG source localization as a graphical generalized elastic net inverse problem and present avariable projectedaugmented Lagrangian algorithm (VPAL) suitable for fast EEG source localization. We prove convergence of this solver for a broad class of separable convex, potentially non-smooth functions subject to linear constraints. Leveraging the efficiency of the proposedVPALalgorithm, we introduce a windowed variation,VPAL , that computes time dynamics in sequence suitable for real-time reconstruction. Our proposed methods are compared to state-of-the-art approaches includingsLORETAand other methods for -regularized inverse problems.more » « less
-
Abstract We consider the solution of nonlinear inverse problems where the forward problem is a discretization of a partial differential equation. Such problems are notoriously difficult to solve in practice and require minimizing a combination of a data-fit term and a regularization term. The main computational bottleneck of typical algorithms is the direct estimation of the data misfit. Therefore, likelihood-free approaches have become appealing alternatives. Nonetheless, difficulties in generalization and limitations in accuracy have hindered their broader utility and applicability. In this work, we use a paired autoencoder framework as a likelihood-free estimator (LFE) for inverse problems. We show that the use of such an architecture allows us to construct a solution efficiently and to overcome some known open problems when using LFEs. In particular, our framework can assess the quality of the solution and improve on it if needed. We demonstrate the viability of our approach using examples from full waveform inversion and inverse electromagnetic imaging.more » « less
-
Abstract In this work, we describe a new approach that uses variational encoder-decoder (VED) networks for efficient uncertainty quantification forgoal-orientedinverse problems. Contrary to standard inverse problems, these approaches are goal-oriented in that the goal is to estimate some quantities of interest (QoI) that are functions of the solution of an inverse problem, rather than the solution itself. Moreover, we are interested in computing uncertainty metrics associated with the QoI, thus utilizing a Bayesian approach for inverse problems that incorporates the prediction operator and techniques for exploring the posterior. This may be particularly challenging, especially for nonlinear, possibly unknown, operators and nonstandard prior assumptions. We harness recent advances in machine learning, i.e. VED networks, to describe a data-driven approach to large-scale inverse problems. This enables a real-time uncertainty quantification for the QoI. One of the advantages of our approach is that we avoid the need to solve challenging inversion problems by training a network to approximate the mapping from observations to QoI. Another main benefit is that we enable uncertainty quantification for the QoI by leveraging probability distributions in the latent and target spaces. This allows us to efficiently generate QoI samples and circumvent complicated or even unknown forward models and prediction operators. Numerical results from medical tomography reconstruction and nonlinear hydraulic tomography demonstrate the potential and broad applicability of the approach.more » « less
-
Understanding the mineralogy and geochemistry of the subsurface is key when assessing and exploring for mineral deposits. To achieve this goal, rapid acquisition and accurate interpretation of drill core data are essential. Hyperspectral shortwave infrared imaging is a rapid and non-destructive analytical method widely used in the minerals industry to map minerals with diagnostic features in core samples. In this paper, we present an automated method to interpret hyperspectral shortwave infrared data on drill core to decipher major felsic rock-forming minerals using supervised machine learning techniques for processing, masking, and extracting mineralogical and textural information. This study utilizes a co-registered training dataset that integrates hyperspectral data with quantitative scanning electron microscopy data instead of spectrum matching using a spectral library. Our methodology overcomes previous limitations in hyperspectral data interpretation for the full mineralogy (i.e., quartz and feldspar) caused by the need to identify spectral features of minerals; in particular, it detects the presence of minerals that are considered invisible in traditional shortwave infrared hyperspectral analysis.more » « less
An official website of the United States government
