skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2152704

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electroencephalograms (EEG) are invaluable for treating neurological disorders, however, mapping EEG electrode readings to brain activity requires solving a challenging inverse problem. For time series data, the use of 1 regularization quickly becomes intractable for many solvers, and, despite the reconstruction advantages of 1 regularization, 2 -based approaches such as standardized low-resolution brain electromagnetic tomographysLORETAare used in practice. In this work, we formulate EEG source localization as a graphical generalized elastic net inverse problem and present avariable projectedaugmented Lagrangian algorithm (VPAL) suitable for fast EEG source localization. We prove convergence of this solver for a broad class of separable convex, potentially non-smooth functions subject to linear constraints. Leveraging the efficiency of the proposedVPALalgorithm, we introduce a windowed variation,VPAL W , that computes time dynamics in sequence suitable for real-time reconstruction. Our proposed methods are compared to state-of-the-art approaches includingsLORETAand other methods for 1 -regularized inverse problems. 
    more » « less
  2. Abstract The Tell Atlas of Algeria has a huge potential for hydrothermal energy from over 240 thermal springs with temperatures up to$$98^\circ$$ 98 C in the Guelma area. The most exciting region is situated in the northeastern part which is known to have the hottest hydrothermal systems. In this work, we use a high-resolution gravity study to identify the location and origin of the hot water, and how it reaches the surface. Gravimetric data analysis shows the shapes of the anomalies arising due to structures at different subsurface depths. The calculation of the energy spectrum for the data also showcases the depths of the bodies causing anomalies. 3D-Euler deconvolution is applied to estimate the depths of preexisting tectonic structures (faults). These preprocessing steps assist with assessing signal attenuation that impacts the Bouguer anomaly map. The residual anomaly is used in a three-dimensional inversion to provide a subsurface density distribution model that illustrates the locations of the origin of the dominant subsurface thermal systems. Overall, the combination of these standard processing steps applied to the measurements of gravity data at the surface provides new insights about the sources of the hydrothermal systems in the Hammam Debagh and Hammam Ouled Ali regions. Faults that are key to the water infiltrating from depth to the surface are also identified. These represent the pathway of the hot water in the study area. 
    more » « less
  3. SUMMARY Within the iron metallogenic province of southeast Missouri, USA, there are several mines that contain not only economic iron resources, magnetite and/or hematite, but also contain rare earth elements, copper and gold. An area including three major deposits, Pea Ridge, Bourbon and Kratz Spring, was selected for detailed modelling for the upper crustal magnetic susceptibility and density structures. For the study area, ground gravity and high-resolution airborne magnetic and gravity gradiometry data sets are available. An efficient and novel joint inversion algorithm for the simultaneous inversion of these multiple data sets is presented. The Gramian coupling constraint is used to correlate the reconstructed density and magnetic susceptibility models. The implementation relies on the structures of the sensitivity matrices and an efficient minimization algorithm to achieve significant reductions in the memory requirements and computational costs. Consequently, it is feasible to use a laptop computer for the inversion of multiple data sets, each containing thousands of data points, for the recovery of models on the study area, each including approximately one million model parameters. This is the first time that these multiple data sets have been simultaneously inverted for this area. The L1-norm stabilizer is used to provide compact and focused images of the ore deposits. For contrast, independent inversions of each data set are also discussed. In general, our results provide new insights about the concealed ore deposits in the Mesoproterozoic basement rocks of southeast Missouri. Both short- and long-wavelength anomalies exist in the recovered models; these provide a high-resolution image of the subsurface. The geometry and physical properties of the known deposits are determined very well. Additionally, some unknown concealed deposits are revealed; these could be economically valuable and should be considered in future geophysical and geological investigations. 
    more » « less
  4. l1 regularization is used to preserve edges or enforce sparsity in a solution to an inverse problem. We investigate the split Bregman and the majorization-minimization iterative methods that turn this nonsmooth minimization problem into a sequence of steps that include solving an -regularized minimization problem. We consider selecting the regularization parameter in the inner generalized Tikhonov regularization problems that occur at each iteration in these iterative methods. The generalized cross validation method and chi2 degrees of freedom test are extended to these inner problems. In particular, for the chi2 test this includes extending the result for problems in which the regularization operator has more rows than columns and showing how to use the -weighted generalized inverse to estimate prior information at each inner iteration. Numerical experiments for image deblurring problems demonstrate that it is more effective to select the regularization parameter automatically within the iterative schemes than to keep it fixed for all iterations. Moreover, an appropriate regularization parameter can be estimated in the early iterations and fixed to convergence. 
    more » « less
    Free, publicly-accessible full text available May 6, 2026
  5. The singular value decomposition (SVD) of a reordering of a matrix A can be used to determine an efficient Kronecker product (KP) sum approximation to A. We present the use of an approximate truncated SVD (TSVD) to find the KP approximation, and contrast using a randomized singular value decomposition algorithm (RSVD), a new enlarged Golub Kahan Bidiagonalization algorithm (EGKB) and the exact TSVD. The EGKB algorithm enlarges the Krylov subspace beyond a given rank for the desired approximation. A suitable rank is determined using an automatic stopping test. We also contrast the use of single and double precision arithmetic to find the approximate TSVDs. To illustrate the accuracy and efficiency in terms of memory and computational cost of these approximate KPs, we consider the solution of the total variation regularized image deblurring problem using the split Bregman algorithm implemented in double precision. Together with an efficient implementation for the reordering of A we demonstrate that the approximate KP sum can be obtained using a TSVD, and that the new EGKB algorithm contrasts favorably with the use of the RSVD. These results verify that it is feasible to use single precision when estimating a KP sum from an approximate TSVD. 
    more » « less
    Free, publicly-accessible full text available May 6, 2026
  6. The mixed Lp-norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurface characteristics. Model interpretation is improved by simulta- neous inversion of multiple data sets using a joint inversion approach. An effective and general algorithm is presented for the mixed Lp-norm joint inversion of gravity and magnetic data sets. The imposition of the structural cross-gradient enforces similarity between the reconstructed models. For efficiency the implementation relies on three crucial realistic details; (i) the data are assumed to be on a uniform grid providing sensitivity matrices that decompose in block Toeplitz Toeplitz block form for each depth layer of the model domain and yield efficiency in storage and computation via 2D fast Fourier transforms; (ii) matrix-free implementation for calculating derivatives of parameters reduces memory and computational overhead; and (iii) an alternating updating algorithm is employed. Balancing of the data misfit terms is imposed to assure that the gravity and magnetic data sets are fit with respect to their individual noise levels without overfitting of either model. Strategies to find all weighting parameters within the objective function are described. The algorithm is validated on two synthetic but complicated models. It is applied to invert gravity and magnetic data acquired over two kimberlite pipes in Botswana, producing models that are in good agreement with borehole information available in the survey area. 
    more » « less