skip to main content


Search for: All records

Award ID contains: 2152760

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    London dispersion (LD) interactions, which stem from long‐range electron correlations arising from instantaneously induced dipoles can occur between neighboring atoms or molecules, for example, between H atoms within ligand C−H groups. These interactions are currently of interest as a new method of stabilizing long bonds and species with unusual oxidation states. They can also limit reactivity by installing LD enhanced groups into organic frameworks or ligand substituents. Here, we address the most recent advances in the design of LD enhanced ligands, the sterically counterintuitive structures that can be generated and the consequences that these interactions can have on the structures and reactivity of sterically crowded heavy group 14 species.

     
    more » « less
  2. Abstract

    Reaction of {LiC6H2−2,4,6‐Cyp3⋅Et2O}2(Cyp=cyclopentyl) (1) of the new dispersion energy donor (DED) ligand, 2,4,6‐triscyclopentylphenyl with SnCl2afforded a mixture of the distannene {Sn(C6H2−2,4,6‐Cyp3)2}2(2), and the cyclotristannane {Sn(C6H2−2,4,6‐Cyp3)2}3(3).2is favored in solution at higher temperature (345 K or above) whereas3is preferred near 298 K. Van't Hoff analysis revealed the3to2conversion has a ΔH=33.36 kcal mol−1and ΔS=0.102 kcal mol−1 K−1, which gives a ΔG300 K=+2.86 kcal mol−1, showing that the conversion of3to2is an endergonic process. Computational studies show that DED stabilization in3is −28.5 kcal mol−1per {Sn(C6H2−2,4,6‐Cyp3)2unit, which exceeds the DED energy in2of −16.3 kcal mol−1per unit. The data clearly show that dispersion interactions are the main arbiter of the3to2equilibrium. Both2and3possess large dispersion stabilization energies which suppress monomer dissociation (supported by EDA results).

     
    more » « less
  3. Free, publicly-accessible full text available April 1, 2025
  4. Thermal Sn–C cleavage in the diarylstannylene Sn(AriPr4)2(AriPr4= C6H3-2,6-(C6H3-2,6-iPr2)2) was used to generate ˙Sn(AriPr4) and ˙AriPr4radicals for alkyne arylstannylation.

     
    more » « less
    Free, publicly-accessible full text available November 2, 2024
  5. Free, publicly-accessible full text available November 1, 2024
  6. Spontaneous Ge6O8cluster formation under ambient conditions using dispersion enhanced aryloxo ligands.

     
    more » « less
    Free, publicly-accessible full text available July 18, 2024
  7. Half a century since the photocatalytic disproportionation of Lappert's dialkyl stannylene SnR 2 , R = CH(SiMe 3 ) 2 (1) gave the persistent trivalent radical [·SnR 3 ], the characterization of the corresponding Sn(I) product, ·SnR is now described. It was isolated as the hexastannaprismane Sn 6 R 6 (2), from the reduction of 1 by the Mg(I)-reagent, Mg(BDI Dip ) 2 , (BDI = (DipNCMe) 2 CH, Dip + 2,6-diisopropylphenyl). 
    more » « less
    Free, publicly-accessible full text available May 2, 2024