- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bhathena, Aaresh (1)
-
Fattahi, Salar (1)
-
Gómez, Andrés (1)
-
Küçükyavuz, Simge (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper investigates convex quadratic optimization problems involvingnindicator variables, each associated with a continuous variable, particularly focusing on scenarios where the matrixQdefining the quadratic term is positive definite and its sparsity pattern corresponds to the adjacency matrix of a tree graph. We introduce a graph-based dynamic programming algorithm that solves this problem in time and memory complexity of$$\mathcal {O}(n^2)$$ . Central to our algorithm is a precise parametric characterization of the cost function across various nodes of the graph corresponding to distinct variables. Our computational experiments conducted on both synthetic and real-world datasets demonstrate the superior performance of our proposed algorithm compared to existing algorithms and state-of-the-art mixed-integer optimization solvers. An important application of our algorithm is in the real-time inference of Gaussian hidden Markov models from data affected by outlier noise. Using a real on-body accelerometer dataset, we solve instances of this problem with over 30,000 variables in under a minute, and its online variant within milliseconds on a standard computer. A Python implementation of our algorithm is available athttps://github.com/aareshfb/Tree-Parametric-Algorithm.git.more » « less
An official website of the United States government
