skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2152819

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Continuous Integration (CI) practices encourage developers to frequently integrate code into a shared repository. Each integration is validated by automatic build and testing such that errors are revealed as early as possible. When CI failures or integration errors are reported, existing techniques are insufficient to automatically locate the root causes for two reasons. First, a CI failure may be triggered by faults in source code and/or build scripts, while current approaches consider only source code. Second, a tentative integration can fail because of build failures and/or test failures, while existing tools focus on test failures only. This paper presents UniLoc, the first unified technique to localize faults in both source code and build scripts given a CI failure log, without assuming the failure’s location (source code or build scripts) and nature (a test failure or not). Adopting the information retrieval (IR) strategy, UniLoc locates buggy files by treating source code and build scripts as documents to search and by considering build logs as search queries. However, instead of naïvely applying an off-the-shelf IR technique to these software artifacts, for more accurate fault localization, UniLoc applies various domain-specific heuristics to optimize the search queries, search space, and ranking formulas. To evaluate UniLoc, we gathered 700 CI failure fixes in 72 open-source projects that are built with Gradle. UniLoc could effectively locate bugs with the average MRR (Mean Reciprocal Rank) value as 0.49, MAP (Mean Average Precision) value as 0.36, and NDCG (Normalized Discounted Cumulative Gain) value as 0.54. UniLoc outperformed the state-of-the-art IR-based tool BLUiR and Locus. UniLoc has the potential to help developers diagnose root causes for CI failures more accurately and efficiently. 
    more » « less