Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A brain–computer interface (BCI) provides a direct communication pathway between the human brain and external devices, enabling users to control them through thought. It records brain signals and classifies them into specific commands for external devices. Among various classifiers used in BCI, those directly classifying covariance matrices using Riemannian geometry find broad applications not only in BCI, but also in diverse fields such as computer vision, natural language processing, domain adaption, and remote sensing. However, the existing Riemannian-based methods exhibit limitations, including time-intensive computations, susceptibility to disturbances, and convergence challenges in scenarios involving high-dimensional matrices. In this paper, we tackle these issues by introducing the Bures–Wasserstein (BW) distance for covariance matrices analysis and demonstrating its advantages in BCI applications. Both theoretical and computational aspects of BW distance are investigated, along with algorithms for Fréchet Mean (or barycenter) estimation using BW distance. Extensive simulations are conducted to evaluate the effectiveness, efficiency, and robustness of the BW distance and barycenter. Additionally, by integrating BW barycenter into the Minimum Distance to Riemannian Mean classifier, we showcase its superior classification performance through evaluations on five real datasets.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available December 14, 2025
-
Independent component analysis (ICA) is a widely used blind source separation method for signal pre-processing. The determination of the number of independent components (ICs) is crucial for achieving optimal performance, as an incorrect choice can result in either under-decomposition or over-decomposition. In this study, we propose a robust method to automatically determine the optimal number of ICs, named the column-wise independent component analysis (CW_ICA). CW_ICA divides the mixed signals into two blocks and applies ICA separately to each block. A quantitative measure, derived from the rank-based correlation matrix computed from the ICs of the two blocks, is utilized to determine the optimal number of ICs. The proposed method is validated and compared with the existing determination methods using simulation and scalp EEG data. The results demonstrate that CW_ICA is a reliable and robust approach for determining the optimal number of ICs. It offers computational efficiency and can be seamlessly integrated with different ICA methods.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Topological data analysis (TDA) has proven to be a potent approach for extracting intricate topological structures from complex and high-dimensional data. In this paper, we propose a TDA-based processing pipeline for analyzing multi-channel scalp EEG data. The pipeline starts with extracting both frequency and temporal information from the signals via the Hilbert–Huang Transform. The sequences of instantaneous frequency and instantaneous amplitude across all electrode channels are treated as approximations of curves in the high-dimensional space. TDA features, which represent the local topological structure of the curves, are further extracted and used in the classification models. Three sets of scalp EEG data, including one collected in a lab and two Brain–computer Interface (BCI) competition data, were used to validate the proposed methods, and compare with other state-of-art TDA methods. The proposed TDA-based approach shows superior performance and outperform the winner of the BCI competition. Besides BCI, the proposed method can also be applied to spatial and temporal data in other domains such as computer vision, remote sensing, and medical imaging.more » « less
An official website of the United States government
