skip to main content

Search for: All records

Award ID contains: 2153607

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper studies Distributionally robust Fair transit Resource Allocation model (DrFRAM) under Wasserstein ambiguity set to optimize the public transit resource allocation during a pandemic. We show that the proposed DrFRAM is highly nonconvex and nonlinear and is, in general, NP-hard. Fortunately, we show that DrFRAM can be reformulated as a mixed-integer linear programming (MILP) by leveraging the equivalent representation of distributionally robust optimization and monotonicity properties, binarizing integer variables, and linearizing nonconvex terms. To improve the proposed MILP formulation, we derive stronger ones and develop valid inequalities by exploiting the model structures. Besides, we develop scenario decomposition methods using different MILP formulations to solve the scenario subproblems and introduce a simple yet effective No-one-left based approximation algorithm with a provable approximation guarantee to solve the model to near optimality. Finally, we numerically demonstrate the effectiveness of the proposed approaches and apply them to real-world data provided by the Blacksburg Transit.
    Free, publicly-accessible full text available December 31, 2023
  2. Free, publicly-accessible full text available July 6, 2023
  3. Free, publicly-accessible full text available May 2, 2023