- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, J. (1)
-
Sager, W_W (1)
-
Sun, J. (1)
-
Thoram, S. (1)
-
Wu, S. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Linear magnetic anomalies (LMA), resulting from Earth's magnetic field reversals recorded by seafloor spreading serve as crucial evidence for oceanic crust formation and plate tectonics. Traditionally, LMA analysis relies on visual inspection and manual interpretation, which can be subject to biases due to the complexities of the tectonic history, uneven data coverage, and strong local anomalies associated with seamounts and fracture zones. In this study, we present a Machine learning (ML)‐based framework to identify LMA, determine their orientations and distinguish spatial patterns across oceans. The framework consists of three stages and is semi‐automated, scalable and unbiased. First, a generation network produces artificial yet realistic magnetic anomalies based on user‐specified conditions of linearity and orientation, addressing the scarcity of the labeled training dataset for supervised ML approaches. Second, a characterization network is trained on these generated magnetic anomalies to identify LMA and their orientations. Third, the detected LMA features are clustered into groups based on predicted orientations, revealing underlying spatial patterns, which are directly related to propagating ridges and tectonic activity. The application of this framework to magnetic data from seven areas in the Atlantic and Pacific oceans aligns well with established magnetic lineations and geological features, such as the Mid‐Atlantic Ridge, Reykjanes Ridge, Galapagos Spreading Center, Shatsky Rise, Juan de Fuca Ridge and even Easter Microplate and Galapagos hotspot. The proposed framework establishes a solid foundation for future data‐driven marine magnetic analyses and facilitates objective and quantitative geological interpretation, thus offering the potential to enhance our understanding of oceanic crust formation.more » « less
An official website of the United States government
