skip to main content

Search for: All records

Award ID contains: 2153858

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work is to present a learning observer-based method for simultaneous detection and estimation of false data injection attacks (FDIAs) to the cyber-physical battery systems. The original battery system in a state-space formulation is transformed into two separate subsystems: one contains both disturbances and the FDIAs and the second one is free from disturbances but subject to FDIAs. A learning observer is then designed for the second subsystem such that the FDIA signals can be estimated and further detected without being affected by the disturbances. This makes the proposed learning observer-based detection and estimation method is robust to disturbances and false declaration of FDIAs can be avoided. Another advantage of the proposed method is that the computing load is low because of the design of a reduced-order learning observer. With a three-cell battery string, a simulation study is employed to verify the effectiveness of proposed detection and estimation method for the FDIAs. 
    more » « less